首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method to recover zinc and iron from zinc leaching residue (ZLR) by the combination of reduction roasting, acid leaching and magnetic separation was proposed. Zinc ferrite in the ZLR was selectively transformed to ZnO and Fe3O4 under CO, CO2 and Ar atmosphere. Subsequently, acid leaching was carried out to dissolve zinc from reduced ZLR while iron was left in the residue and recovered by magnetic separation. The mineralogical changes of ZLR during the processes were characterized by XRF, TG, XRD, SEM–EDS and VSM. The effects of roasting and leaching conditions were investigated with the optimum conditions obtained as follows: roasted at 750 °C for 90 min with 8% CO and CO/CO + CO2 ratio at 30%; leached at 35 °C for 60 min with 90 g/l sulfuric acid and liquid to solid ratio at 10:1. The iron was recovered by magnetic separation with magnetic intensity at 1160 G for 20 min. Under the optimum operation, 61.38% of zinc was recovered and 80.9% of iron recovery was achieved. This novel method not only realized the simultaneous recovery of zinc and iron but also solved the environmental problem caused by the storage of massive ZLR.  相似文献   

2.
The utilization of abundant low grade goethite (α  FeOOH) ores is potentially important to many countries in the world, especially Australia. These ores contain many detrimental impurities and are difficult to upgrade to make suitable concentrates for the blast furnace. In this paper, chemical and mineral transformations of a goethite ore were studied by dehydroxylation, reduction roasting in CO and CO2 gas mixtures, and magnetic separation. The goethite sample was taken from a reject stream at an iron ore mine from the Pilbara region, Western Australia. The roasting temperature range investigated was 400–700 °C. Chemical and mineralogical analysis was conducted using XRF, XRD, optical microscope, EPMA, and SEM. Magnetic separation was conducted using a Davis tube tester and a high intensity magnetic separator.The results show that reduction roasting can remove moisture and impurities but does not significantly change the Fe content in the feed. However, reduction roasting transforms goethite to hematite and eventually maghemite which can be recovered by magnetic separation, allowing upgrading. Further studies are needed to optimize the reduction roasting and correlate it with the magnetic separation to maximize the efficiency of iron upgrading.  相似文献   

3.
Trona, Na2CO3 · NaHCO3 · 2H2O, is mined as the primary source for sodium carbonate production in the United States. Recent studies have shown that the flotation method can be used for pre-processing of trona ore to remove insoluble mineral contaminants for the production of soda ash (sodium carbonate). Studies with carbonate salts suggest that certain important factors can affect their flotation response, including viscosity of the brine and interfacial water structure. Flotation studies showed that contrary to the strong flotation of NaHCO3 with both anionic and cationic collectors, Na2CO3 does not float at all. Based on the analysis of interfacial water structure in saturated brines, Na2CO3 was found to act as a strong water structure maker, whereas NaHCO3 acts as a weak water structure maker. Bubble attachment time measurements suggest that collector adsorption at the surface of NaHCO3 induces flotation; this is not the case for Na2CO3. Contact angle measurements indicated that the surface of Na2CO3 is hydrated to a great extent, whereas the NaHCO3 salt surface is less hydrated. These results reveal that there is a strong relationship between the interfacial water structure and the contact angle of these salts. The less stable NaHCO3 surface is ascribed to the interfacial water structure which allows for NaHCO3 flotation with both anionic and cationic collectors.  相似文献   

4.
《Minerals Engineering》2006,19(4):370-371
In this study, physical and physicochemical experiments were carried out to improve the quality of nepheline syenite ore in Uludag massive, the Bursa Orhaneli region of western Turkey. After determinations of the mineralogical and the chemical characterizations, magnetic separation and flotation methods were applied on the ore sample separately and combined. The best results were found in combination of the high intensity dry magnetic separation and flotation between −200 + 38 μm particle sizes. A nepheline syenite concentrate was obtained with 7.3% K2O, 5.2% Na2O, 0.08% Fe2O3 and 0.09% TiO2 by the weight of 56.6% at the end of the experiments.  相似文献   

5.
In-pit crushing and conveying (IPCC) and ore sorting are two developing technologies that, in addition to providing likely economic benefits, also have the potential to reduce the greenhouse gas footprint of mining and mineral processing operations. A life cycle assessment study was carried out to provide estimates of the likely greenhouse gas reductions from the implementation of IPCC and ore sorting technologies in a hypothetical copper mining and mineral processing operation. Based on the assumed configurations and operating characteristics of the two systems, the results indicated that IPCC had 4% less (i.e. 3 kg CO2e/t ore or 0.16 kg CO2e/t ore.km) greenhouse gas emissions than truck haulage for the base case configuration. Using electricity generated from natural gas rather than black coal increased the greenhouse gas advantage of IPCC over truck haulage from 4% to about 22% (i.e. 14 kg CO2e/t ore or 0.74 kg CO2e/t ore.km). However, transport distance and annual plant feedrate affect the magnitude of these greenhouse gas reductions.A potential reduction of about 13 kg CO2e/t ore in greenhouse gas emissions was estimated from the use of ore sorting technology based on black coal generated electricity, while with natural gas-based electricity the reduction was only 8 kg CO2e/t ore. The mass rejection rate of the ore sorting device was the main operational variable affecting the magnitude of this reduction, although it is also affected by the specific comminution and concentration energy requirements of the ore. While the results indicate that ore sorting offers nearly four times the potential reduction in greenhouse gas emissions than IPCC did at the same annual plant feedrate for the base case configuration with black coal-based electricity, the situation was reversed with natural gas-based electricity, with IPCC offering nearly double the potential reduction in greenhouse gas emissions than ore sorting. However, it should be appreciated that due to the limited amount of publicly available data on these technologies at the present time, the results of this study should be viewed as first estimates only.  相似文献   

6.
A series of nickel laterite ores with different calculated amounts of anhydrous sodium sulphate were prepared by physical blending or sodium sulphate solution impregnation. The reduction of the prepared nickel laterite ore by H2 was carried out in a fluidised-bed reactor with provisions for temperature and agitation control, and the magnetic separation of the reduced ore was performed using a Davis tube magnetic separator. The mineralogical properties of the raw laterite ore, reduced ore and magnetic concentrate were characterised using ICP, TG–DSC, N2 adsorption, X-ray diffraction and optical microscopy. The catalytic activity of sodium sulphate was also studied by using Hydrogen temperature-programed reduction. The experimental results indicate that Na2SO4 could overcome the kinetic problems faced by the laterite ore and that it exhibited noticeable catalytic activity only if the temperature reached at least 750 °C. This high temperature accelerated the crystal phase transition of the silicate minerals and increased the utilisation of H2. In comparing the results from the two different methods for adding Na2SO4, the nickel content and recovery of the magnetic concentrate were increased by using the impregnation method rather than the physical blending method and the increasing amount of sodium sulphate assisted in the further beneficiation of nickel. The partial pressure of H2 and the reducing time also affected the reduction process of the iron oxides. The results of the microscopic study indicated that the formation of a Fe–S solid solution, which was derived from the SO2 sulphide reduction of FeO, was conducive to mass transfer and accelerated the coalescence of metallic ferronickel particles. For the nickel laterite ore, under the synergistic effect of sodium sulphate and hydrogen, a nickel content and nickel recovery of 6.38% and 91.07% were obtained, respectively, with high product selectivity.  相似文献   

7.
辽宁凤城含铀硼铁矿分选研究   总被引:1,自引:1,他引:0  
针对辽宁凤城硼铁矿资源,在测定矿石成分及其目的矿物嵌布特性的基础上,采用细磨磁选的方法进行了分选研究,并考查了磨矿细度对分选效果及磁铁矿解离度的影响。结果表明,随着磨矿细度的增加,磁选精矿中铁品位逐渐提高,B2O3和铀的品位呈缓慢降低趋势,当磨矿细度达到-320目占99.26%时,精矿中铁品位达到60.27%,回收率为76.76%,磁铁矿单体解离度为79.23%。该研究将为确定合理的分选工艺奠定基础。  相似文献   

8.
The extraction of titanium (IV) from sulfate, and nitrate solutions has been studied using tri-n-butyl phosphate (TBP) in kerosene. Extraction of titanium was affected by acid concentration over the range of 0.5–4 mol L?1. The titanium distribution coefficient reached a minimum between 1 and 2 mol L?1 acid for both sulfate and nitrate solutions. Third phase formation was observed in the extraction of titanium from acidic media at all condition tested. At the next stage, the stripping of titanium was studied using H2SO4, H2SO4 + H2O2 and Na2CO3. The kinetics of the stripping were very slow for H2SO4. The use of complex forming stripping agents (H2SO4 + H2O2) and Na2CO3 significantly improved the kinetics of stripping. About 98% recovery was achieved by extracting titanium from an aqueous nitrate solution using TBP and stripping with sodium carbonate.  相似文献   

9.
以安徽某粉末冶金公司超级铁精矿生产线所用普通铁精矿为原料,将其再磨、弱磁再选后进行生产超级铁精矿的反浮选试验,通过添加调整剂Na2CO3、水玻璃、淀粉来解决现场单纯使用十二胺引起的反浮选回收率偏低问题,并探讨通过提高矿浆浓度来提高反浮选的生产效率。试验结果表明:将2 000 g/t Na2CO3、200 g/t水玻璃、100 g/t淀粉与130 g/t十二胺配合使用,在24%矿浆浓度下,反浮选所获超级铁精矿的作业回收率可由单纯使用十二胺时的44.61%(对原料为43.44%)提高到89.58%(对原料为89.27%);将矿浆浓度提高到28%,可使反浮选处理能力提高16.68%,而作业铁回收率仍达87.69%(对原料为87.38%)。  相似文献   

10.
The flotation of rare earth (RE) minerals (i.e. xenotime, monazite-(Nd), RE carbonate mineral) from an ore consisting mainly of silicate minerals (i.e. primary silicate minerals and nontronite clay) and hematite was investigated using tall oil fatty acids (Aero 704, Sylfat FA2) as collector. The RE minerals are enriched with Fe. The effects of tall oil fatty acid dosage, pH, temperature, and conventional depressants (sodium lignin sulfonate, sodium metasilicate, sodium fluoride, sodium metasilicate and sodium fluoride, and soluble starch) were determined at grinding size of P80 = 63 μm. At this grinding size, the grain size of the RE minerals ranges from 2 to 40 μm, percentage liberation is 9–22%, and percentage association with nontronite and quartz is 30–35%. Results indicated that Sylfat FA2 at 22450 g/t concentration was the more efficient tall oil fatty acid collector at natural pH (pH 7) to basic pH (pH 10.0–11.5). Flotation at the room temperature (25 °C) gave higher selectivity than 40 °C temperature flotation. The results on the effect of depressants showed similar selectivity curves against the gangues SiO2, Al2O3, and Fe2O3 suggesting that the chemical selectivity of the depressants has been limited by the incomplete liberation of the RE minerals in the feed sample. High recoveries at 76–84% (Y + Nd + Ce)2O3 but still low (Y + Nd + Ce)2O3 grade at 2.1% in the froth were obtained at flotation conditions of 63 μm, 25 °C, pH 10.5, 1,875 g/ton sodium metasilicate and 525 g/ton sodium fluoride or 250 g/ton soluble starch as depressant for the silicates and hematite, and 22,450 g/t Sylfat FA2 as collector for the RE minerals (initial (Y + Nd + Ce)2O3 feed grade = 0.77%). The recoveries of gangue SiO2, Al2O3, and Fe2O3 in the froth were low at 25–30%, 30–37%, and 30–36%, respectively. The mineralogical analysis of a high grade froth and its corresponding tailing product showed that the RE minerals have been concentrated in the froth while the primary silicate minerals and hematite have been relatively concentrated in the tailing. However, the clay minerals, primary silicate minerals, and hematite still occupy the bulk content of the froth. This suggests that incomplete liberation of the RE minerals led to the poor grade result, supporting likewise the selectivity curve results by the different depressants. This study showed that liberation is important in achieving selective separation.  相似文献   

11.
Laboratory studies were conducted to investigate the removal or management of thiosalts within the lime-neutralization process, to prevent or minimize the adverse effects of thiosalts that cause delayed acidity to downstream environment. The oxidizing reagent hydrogen peroxide (H2O2) and the pH stabilizing (buffering) reagents carbon dioxide (CO2), sodium bicarbonate (NaHCO3) and sodium carbonate (Na2CO3) were examined for removal and management of thiosalts, respectively. Chemical oxygen demand (COD) was determined to be a proxy for thiosalts and was employed for their rapid assessment. The Target Level of thiosalts harmless to aquatic life was found to be 30 mg/L or less. The optimized lime-neutralization process required a pH level of 9.5–10 and aeration. Over-liming to pH levels >11 did not provide excess alkalinity, hardness, or a decrease in thiosalt levels.Addition of H2O2 to either the acid or lime-neutralized water at a molar H2O2:S2O3 ratio of 1–1.5 removed thiosalts to safe levels. About 10–15 min. at room temperature was ample time low temperatures slowed down the process but the dosages were not affected. Removal of thiosalts from 170 to 30 mg/L caused a decrease in pH from 9.6 to 6.5. Among the buffering reagents studied, both NaHCO3 and Na2CO3 provided adequate buffering and a stable pH of 7 to the lime-neutralized water; whereas CO2 resulted in poor buffering and an unstable pH that remained below 6. In cold temperatures, NaHCO3 and Na2CO3 also outperformed CO2 with higher alkalinity and hardness. Na2CO3 addition to lime neutralized water at pH 9.5 was found to be the most cost-effective option. Other methods could have niche applications, depending on seasonal variations and temperature.  相似文献   

12.
Mineral carbon sequestration (MCS) is a type of carbon storage based on natural rock weathering processes where CO2, dissolved in rainwater, reacts with alkaline minerals to form solid carbonates. Although MCS has advantages over other carbon storage techniques, an economic MCS process has not yet been developed. Two approaches were taken in this work to attempt to reduce the cost of MCS. The first approach was to use a waste material, serpentine waste from ultramafic nickel ore processing, as a feedstock. The second approach was to develop pre-treatments to increase the carbon storage capacity of the feedstock. Two pre-treatments were investigated in this work, including microwave pre-treatment and leaching with ligands at neutral to alkaline pH. The carbon uptake of ultramafic ores was found to increase with increasing microwave pre-treatment after a threshold heating time of 4 min was surpassed. A maximum carbon uptake of 18.3 g CO2/100 g ore (corresponding to a carbonate conversion of 36.6%) was observed for microwave pre-treated ore. The increase in carbon uptake was attributed primarily to the conversion of serpentine to olivine in ultramafic ores that occurs as result of microwave pre-treatment. The effect of five different ligands (catechol, citrate, EDTA, oxalate and tiron) on the carbon uptake of ultramafic ores was investigated. Of the ligands tested, only catechol and tiron were found to both improve the leaching of magnesium from the ores and the quantity of CO2 stored. A maximum carbon uptake of 9.7 g/100 g ore (corresponding to a carbonate conversion of 19.3%) was observed for ultramafic ore pre-leached and carbonated in tiron solution at pH 10. This is the first time ligands have been reported to improve the carbon uptake of mineral carbon sequestration feedstock. Although process optimization work was not conducted, both microwave pre-treatment and leaching with ligands at neutral to alkaline pH show promise as ways to lower the cost of MCS.  相似文献   

13.
A study of the mechanochemical activation of molybdenum ore concentrate (MoS2) with sodium peroxide (Na2O2) shows that sodium molybdate dihydrate (Na2MoO4 · 2H2O) is the final crystalline product. The mechanochemical formation of sodium molybdate dihydrate is evidenced by XRD, 23Na MAS NMR and the increasing solubility of the molybdenum in water as the oxidative reaction proceeds.  相似文献   

14.
《Minerals Engineering》2006,19(11):1185-1190
The celestite concentrate obtained from Barite Mining Company (Sivas-Turkey) was converted to strontium carbonate using sodium carbonate in a planetary ball mill operated both in dry and wet modes. After wet planetary milling of celestite concentrate and sodium carbonate mixture, solid strontium carbonate and soluble Na2SO4 were obtained. The conversion reaction were followed by dissolution and sulphate analyses after high-energy milling operations. The 10, 20 and 40 min of wet milling experiments were performed in a planetary mill and the results showed that over 90% of dissolution and conversion of initial celestite to strontium carbonate was achievable by high-energy milling.  相似文献   

15.
Ferritungstite ores have great commercial value because of the huge reserve and high content of W, Mo and Fe. But their economic recovery has long been a challenge due to its complex mineralogy and heterogeneous. The current study investigated how reductive roasting of ferritungstite ores with mixed sodium salts affected the phase evolution of W, Mo and Fe through Micro-area XRD and Powder XRD, with the goal of comprehensive transformation of ferritungstite. Reductive roasting with mixed sodium salts at 800 °C transformed ferritungstite to Na2WO4 and magnetite (Fe3O4), which were easily recovered by water leaching and magnetic separation. Furthermore, a lot of pores and gaps rather than sintering or agglomeration was observed in the ore particles after roasting by SEM-EDS, which was beneficial for the water leaching of W and Mo. As a result, 96.40% of W and 96.64% of Mo were extracted after water leaching, while an iron concentrate with an Fe content of 55.65% and recovery of 83.30% was obtained after magnetic separation. These results suggested such process would be applicable to the comprehensive recovery of valuable metals from ferritungstite ores, as well as similar tungsten ores and scraps.  相似文献   

16.
《Minerals Engineering》2006,19(9):883-895
The influence of pyrite pre-oxidation in alkaline solutions on gold recovery by cyanidation from Twin Creek refractory gold ore in which pyrite was identified as the major sulfide mineral has been investigated with the aid of electrochemical measurements, leaching experiments, and direct analysis of reaction products for selected residues. It was found that gold recovery by cyanidation in bottle roll experiments mainly depended on the extent of pyrite pre-oxidation. The rate of pyrite oxidation in alkaline solutions measured by electrochemical measurements, including chronoamperometry and linear sweep voltammetry, increased with an increase in pH, potential, and temperature. All alkaline reagents used for the electrochemical measurements, NaOH, NH4OH, Na2CO3 and Ca(OH)2, showed a similar effect on pyrite oxidation kinetics. However, the results of alkaline pre-oxidation for pyrite of the Twin Creek refractory gold ore suggested that NaOH and Na2CO3/Ca(OH)2 were superior to Ca(OH)2. Without pre-oxidation, cyanide leachable gold was found to be only 20% which could be increased to 70% under appropriate pre-oxidation conditions. At the same time, cyanide consumption decreased from 2.5 kg/t ore to 1.5 kg/t ore.Selected residues after pre-oxidation and cyanidation were examined by X-ray diffraction. Backscattered electron images of pyrite particles in these residues were taken. The reaction products at the surface of pyrite particles were found to be iron-, silicon-, and calcium-bearing compounds with variable amounts of sulfur as determined by X-ray energy dispersion analysis. Additionally, some mineral fines, such as aluminum and/or potassium-bearing minerals, were found to be present at the partially oxidized pyrite surface.  相似文献   

17.
In iron ore concentration, reverse cationic flotation of quartz has been successfully employed for particles below 150 μm previously deslimed. Amine and starch are used, respectively, as quartz collector and iron oxides depressant. Understanding the mechanisms of reagents interaction is relevant to improve the separation selectivity, especially for high amine dosages. The term clathrate was used to explain this interaction, meaning a molecular compound in which molecules of one species occupy the empty spaces in the lattice of the other species, resulting in the depression of hydrophobic minerals. Laboratory scale experiments were carried out with itabirite iron ore in three different size ranges. The clathrate formation between molecules of amine and starch may explain the increase of SiO2 content in the concentrates of the coarse size range (−150 + 45 μm) due to an increase in amine dosage.  相似文献   

18.
《Minerals Engineering》2006,19(4):368-369
Boron minerals are generally concentrated using attrition methods followed by screening and classification to remove clay minerals in industrial scale. Physical concentration methods are used in Kestelek Boron Mine for the concentration of colemanite. Because of the inefficient process operation, the tailings containing about 20% B2O3 are discarded into the tailings pond. In this study, colemanite tailings sample taken from tailings pond was treated using scrubbing + screening followed by flotation to recover the lost boron. As a result of the experimental studies, a concentrate containing 44.5% B2O3 was produced with 68.4% B2O3 recovery.  相似文献   

19.
Beneficiation routes aimed at dephosphorisation of oolitic gravity magnetic concentrate and involving a combination of roasting, re-grinding, magnetic separation and water and acid leaching are investigated. Roasting was carried out at 900 °C for 1 h without or with lime or sodium hydroxide as roasting additives. When additives were used, cement phases of Si–Al–Na–Ca–O type were detected as well as the mineral giuseppettite. During the thermal process sodium silicate is liquefied and the newly formed phases coat the oolites and penetrate inside the cracks. Energy Dispersive Spectroscopy analysis has indicated that the zone surrounding the oolites consists of Na, Al and Si phases with part of phosphorus being captured there. As a result of the alkaline roasting, goethite is partly transformed to magnetite and this reduction is reinforced with an increase in sodium hydroxide dosage. Investigation of redistribution of phosphorous shows that it could be only partly separated if leaching is not accompanied by re-grinding and physical separation. The recommended dosage of the reductive agent for the final flowsheet is 8 mass% ratio to concentrate. Grinding to a mean size of 0.040 mm, with water and acid leaching and double magnetic separation creates conditions to obtain a high-quality iron concentrate with 65.97% Fe and recovery of 92.43%, with simultaneous decrease in the phosphorus content from 0.71% to 0.05%.  相似文献   

20.
This paper describes an Infrared (IR) thermography based technique for sorting of iron ores consisting of alumina-rich particles of relatively low thermal absorptivity as compared to iron-rich particles in the ores. The technique primarily consists of selection of iron ores with Fe compositions ranging from 59 to 69 wt.% and alumina (Al2O3) from 0.35 to 8.85 wt.%, crushing the ores up to the particle size range around 10 mm. The iron ore fines are uniformly heated using heat source of wavelength ranging from 10−2 to 10−6 m for a period of time sufficient to create a difference in infrared emission between the ore particles. The thermal image of the heated ores is captured by IR thermography. The alumina-rich iron ore particles are heated up less as the thermal absorptivity of these ores is less than the ores with high iron content. Thus, the alumina-rich iron ore particles can be identified by observing the temperature profile and/or thermal image of these ores. This technique of ore recognition can be useful in improving the feed quality of iron ore to the blast furnace in iron and steel industries by rejecting the alumina-rich ores through modification in the presently existing processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号