首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
沭阳低品位蓝晶石矿石选矿试验   总被引:1,自引:0,他引:1  
针对沭阳低品位蓝晶石矿石进行选矿试验,在条件试验的基础上,比较了磨矿-脱泥-先高梯度强磁选后酸性浮选和磨矿-脱泥-先酸性浮选后高梯度强磁选两种流程的选别效果,最终确定采用磨矿-脱泥-先高梯度强磁选后酸性浮选流程,获得了Al2O3品位为55.46%、回收率为81.24%的蓝晶石精矿,为该蓝晶石资源的开发提供了技术依据。  相似文献   

2.
江苏某蓝晶石矿石品位低、杂质矿物种类较多、蓝晶石与杂质矿物相嵌关系复杂,属难选矿石。为了给该蓝晶石资源的开发利用提供依据,对其进行了选矿试验。结果表明:采用磨矿-高梯度磁选除铁钛-按45 μm分级-细粒级脱泥-脱泥沉砂和粗粒级分别酸性浮选工艺流程,可以获得Al2O3品位为55.69%、Al2O3回收率为 69.23%的蓝晶石精矿1和Al2O3品位为50.17%、Al2O3回收率为 15.16%的蓝晶石精矿2;精矿1达到国家行业标准中LJ-55牌号蓝晶石精矿的质量要求,精矿2可用作陶瓷原料。  相似文献   

3.
对河南某长石矿进行了矿物组成分析、物相分析和多元素分析,通过磨矿细度、磁选、脱泥粒度、浮选等试验研究,确定了 “磨矿-脱泥-强磁选-脱泥-反浮选除铁-长石浮选”的工艺流程。结果表明,该选矿工艺最终可获得产率49.98%、K2O品位11.12%、TFe含量0.20%的长石精矿以及产率12.75%、SiO2品位96.54%的石英精矿。  相似文献   

4.
南阳某低品位蓝晶石矿选矿试验研究   总被引:2,自引:0,他引:2  
对南阳某低品位难选蓝晶石矿采用脱泥-浮选-重选工艺进行选矿试验研究,探索了磨矿、脱泥、浮选的适宜工艺条件.采用蓝晶石含量为22%的原矿,通过浮选-重选工艺流程,最终获得A12O3含量超过55%的蓝晶石精矿.  相似文献   

5.
对铁品位34%左右的某铜铁矿山选铜尾矿进行了单一强磁选、强磁选-重选、强磁选-磨矿-反浮选、强磁选-磨矿-强磁选-反浮选、磨矿-强磁选-反浮选的多方案试验研究,经对比分析,最终确定采用磨矿-强磁选-反浮选工艺,可获得精矿铁品位63.17%、回收率70.30%的良好指标。  相似文献   

6.
对某矿山代表性矿样进行了矿石性质及选矿工艺试验研究, 进行了单一磁选、焙烧-磁选、磁选-反浮选、焙烧-磁选-反浮选等方案对比。结果表明, 焙烧-磁选-反浮选能获得合格铁精矿, 在最终磨矿细度-0.037 mm粒级占75%时, 对品位32.50%的原矿经过三段磁选、三段浮选, 可获得精矿铁品位59.94%、铁回收率72.84%、尾矿品位16.13%的选别指标, 精矿中主要杂质SiO2含量8.47%。  相似文献   

7.
针对酒泉某难选红柱石矿开展了球磨和棒磨的磨矿细度对比试验、脱泥粒度试验和碱性与酸性介质浮选工艺对比试验研究。试验结果表明,该红柱石矿适合棒磨磨矿,较优磨矿细度为-0.074mm占85.19%,较优脱泥粒度为20μm,碱性介质浮选工艺的精矿指标较优。在确定碱性介质浮选工艺基础上,试样经过磨矿-脱泥-磁选-1粗8精1扫的闭路流程试验,获得了Al_2O_3品位为52.94%、红柱石回收率为54.10%、红柱石含量为83.88%的精矿。  相似文献   

8.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

9.
广西某低品位长石矿K_2O+Na_2O品位为8.72%,非金属矿物以正长石、斜长石、石英等为主,磨矿时易泥化,石英与长石分离困难。为实现长石的回收利用,采用磁选除铁—脱泥—浮选分离原则流程进行选矿试验。结果表明,在磨矿细度-0.074mm占40%的条件下,原矿经磁选除铁—机械脱泥—1粗1精2扫浮选分离—再磁选流程选别,可获得长石精矿K_2O+Na_2O品位13.51%、Fe_2O_3含量0.13%,K_2O回收率83.90%、Na_2O回收率81.24%的良好指标,石英精矿SiO_2品位99.13%,满足使用要求,实现了长石与石英无氟浮选分离,可供该长石矿的开发利用参考。  相似文献   

10.
针对广西某铝土矿高硅高铁原矿,进行了降铁脱硅选矿试验研究。采用强磁选、重-磁联合、单一浮选、浮-磁、脱泥-强磁、脱泥-磁选-浮选等工艺对该铝土矿进行降铁脱硅以提高其Al_2O_3品位,结果表明,采用脱泥-磁选-浮选联合工艺流程获得的选矿指标远高于其它选矿方法,该工艺最终获得Al_2O_3品位69.94%,回收率71.41%的铝精矿,降铁脱硅提高Al_2O_3品位的效果较好。  相似文献   

11.
四川省德昌县大陆槽稀土矿主要稀土矿物为氟碳铈矿,其嵌布粒度细,与其他矿物嵌布关系复杂;萤石、重晶石、锶钡硫酸盐矿物等伴生矿物含量高,矿石泥化现象严重,造成稀土矿物难以回收利用。针对目的矿物的分布情况和矿石性质,确定了浮—磁联合的工艺流程,重点考察了脱泥、磨矿细度、浮选捕收剂、抑制剂、起泡剂等条件试验,最终确定了预先脱泥,磨矿细度-0.074 mm占65%,采用水玻璃为抑制剂,新型捕收剂103为捕收剂,SL-301为起泡剂的“预先脱泥—两粗—三扫—三精—精扫选”闭路试验流程,获得品位30.38%、回收率73.74%的浮选精矿和品位11.93%,回收率13.41%的浮选次精矿;浮选精矿通过磁场强度为1.19×103 kA/m的“一粗一扫”强磁作业后,获得品位61.11%、回收率60.09%的最终稀土精矿,浮选次精矿经场强1.19×103 kA/m的强磁产出的粗精矿和浮选精矿经强磁产出的中矿混合再次经过1.19×103 kA/m强磁作业后产出品位56.03%、回收率3.87%的稀土磁选次精矿,磁选产出的精矿和次精矿总回收率达63.96%。  相似文献   

12.
吴红  王小玉  刘军  张永 《金属矿山》2021,50(9):79-84
山西某微细粒铁矿石选矿厂原采用阶段磨矿—弱磁选—强磁选—阴离子反浮选工艺流程,生产中存在强磁选尾矿铁品位偏高、浮选指标不理想等问题。因此,通过一段强磁选磁场强度优化、弱磁选—强磁选替代絮凝脱泥等方法优化工艺流程。结果表明:①针对铁品位30.60%的试样,在磨矿细度为-0.076 mm占85%的条件下,采用一段弱磁选(143 kA/m)、强磁选(1 114 kA/m)工艺流程,可使强磁选尾矿铁品位降至6.18%,此时铁回收率损失仅为4.82%。②以二段弱磁选—强磁选流程替代原絮凝脱泥工艺,在二段磨矿细度为-0.038 mm占85%的条件下,二段弱磁选、强磁选磁场强度分别为143 kA/m、637 kA/m,浮选给矿铁品位由39.90%大幅提高至48.36%,浮选给矿中-10 μm粒级含量由27.22%降低至22.19%,-20 μm粒级含量由48.79%降低至44.21%。③对二段弱磁选+强磁选混合精矿采用“1粗1精3扫”闭路浮选流程,在1次粗选浮选浓度为25%、温度为30 ℃的条件下,依次添加NaOH 1 200 g/t、淀粉1 000 g/t、CaO 500 g/t,RA-915粗选、精选用量分别为900 g/t、150 g/t,最终可获得铁品位66.13%、铁回收率88.44%的浮选铁精矿,此时浮选尾矿铁品位为15.83%。优化后的试验流程降低了强磁选尾矿铁品位,同时提高了浮选给矿的铁品位,降低了浮选提质降杂难度,对同类型的铁矿石开发利用具有借鉴意义。 关键词 微细粒|铁矿石|高梯度强磁选|阴离子反浮选  相似文献   

13.
山东某长石矿石除铁增白选矿试验   总被引:1,自引:0,他引:1  
张鑫  张凌燕  洪微  刘新 《金属矿山》2014,43(8):74-78
山东某长石矿石属高含铁量长石矿石,铁赋存于铁矿物、云母、黄铁矿及一些含铁碱金属硅酸盐中。为了从该矿石获得陶瓷工业用高品级钾长石原料,对其开展了除铁增白选矿试验研究。试验根据矿石性质,采用磨矿—按20μm脱泥—高梯度磁选脱除磁性铁—乙黄药浮选脱除黄铁矿—十二胺+煤油浮选脱除云母—ZL-1浮选脱除含铁碱金属硅酸盐工艺流程,经系统的条件试验,最终获得了产率为76.24%、Al2O3回收率为80.31%的长石精矿,其Al2O3含量为16.05%、K2O+Na2O含量为12.50%、Fe2O3含量为0.09%、白度为67.26%,达到陶瓷行业用钾长石精矿一级品质量标准。  相似文献   

14.
某微细粒嵌布铁矿石磁选—絮凝脱泥—反浮选试验   总被引:1,自引:0,他引:1  
唐雪峰 《金属矿山》2015,44(2):53-57
湖南某铁矿石中铁矿物以磁铁矿为主,赤铁矿次之,并有12.12%的铁以硅酸盐矿物形式存在。其中磁铁矿属中细粒嵌布,但赤铁矿具典型极微细粒嵌布特征,分选难度极大。根据矿石性质,采用阶段磨矿—弱磁选—强磁选—选择性絮凝脱泥—反浮选工艺进行选矿试验,即第1步在-0.075 mm占65.87%的较粗磨矿细度下通过弱磁选选出磁铁矿,第2步通过强磁选抛尾富集弱磁选尾矿中的赤铁矿,第3步对强磁选精矿进行2段阶段细磨(一段磨至-0.038 mm占96.56%,二段磨至-0.019 mm占98.93%)、4段加磁种的选择性絮凝脱泥(以所得磁铁矿精矿为磁种,与强磁选精矿一起细磨),第4步对脱泥沉砂进行1粗1精4扫反浮选,最终获得了产率为32.33%、铁品位为63.55%、铁回收率为71.34%的综合铁精矿,从而为该矿石的合理开发利用提供了技术支撑。  相似文献   

15.
祁东铁矿选矿工艺研究   总被引:3,自引:0,他引:3  
徐建本 《矿冶工程》1989,9(2):25-28
采用阶段磨选联合流程对祁东铁矿进行了详细研究。试验表明,阶段磨矿—弱磁、重选、强磁选;阶段磨矿—弱磁、重选、强磁—絮凝脱泥阴离子反浮选;阶段磨矿—弱磁、重选、强磁—絮凝脱泥三种联合选矿流程均可获得较好结果。前者有较大的应用前景。  相似文献   

16.
为提高浮选精煤质量和产率,充分利用煤系伴生矿物,通过对林西矿选煤厂浮选入料进行磨矿解离和浮选试验研究,制定了“浮选入料磨矿+旋流器分级脱泥+旋流器底流浮选+旋流器溢流磁选”提纯回收高岭土工艺流程。该工艺控制浮选入料磨矿细度为>0.0374 mm占60%,对解离后的浮选入料依次采用Ф150、Ф75、Ф50、Ф10 mm的小锥角旋流器进行分级脱泥,旋流器底流进行浮选,旋流器溢流进行1.3 T高梯度磁选提纯,并对提纯产物采用980℃温度煅烧。试验结果表明:采用该工艺方法,既可以使煤泥中细粒级黏土得到有效分离,为煤泥浮选创造有利的条件,提高煤泥浮选效率和精煤质量,又可回收高岭土,从而为高灰超细煤泥的综合利用提供了一种新的技术途径。  相似文献   

17.
某铜镍硫化矿浮选脱除滑石的研究   总被引:5,自引:0,他引:5  
某铜镍硫化矿中存在的滑石及蛇纹石等易浮脉石矿物严重干扰了铜镍矿物的浮选,影响了浮选指标。通过工艺矿物学研究和浮选脱泥试验研究,考察了磨矿细度、起泡剂的种类、pH值和浮选时间对浮选脱泥的影响,通过浮选确定了最佳浮选脱泥条件,并探讨了其原理。浮选脱泥减轻了矿泥对铜镍选别的影响,在保证精矿质量不变的前提下,提高了铜镍精矿的回收率。并在工业试验中得到了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号