首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了解决沙曲矿近距离高瓦斯煤层群开采过程中瓦斯超限这一难题,运用理论分析和数值分析相结合的方法对沙曲矿南翼4号煤开采采动裂隙演化规律进行了分析,确定了高位裂隙钻孔组的合理布置位置。结果表明:采空区垮落带和裂隙带高度分别为8、36.5 m,贯通裂隙带距工作面顶板垂高8~23 m,非贯通裂隙带距工作面顶板垂高23~42 m,工作面上方22 m左右裂隙分布密集且覆岩整体结构相对稳定,将钻孔延深至该区域能有效提高瓦斯抽采的浓度、抽采量和稳定性。现场实践表明:利用DDR-1200型千米定向钻机,将钻孔布置在距工作面上方22 m处时,瓦斯抽采效果明显,平均瓦斯抽采体积分数90.68%,平均瓦斯抽采纯量达11.58 m3/min。  相似文献   

2.
 七台河新立矿区具有煤层薄、透气性差、煤坚固性系数小、瓦斯含量高等特点,同时煤层群具有分组性,各组内煤层间距较小。为解决邻近层瓦斯涌出量大、顺层钻孔施工难度大、本煤层抽放效果差,回采工作面上隅角和回风流中瓦斯浓度容易超限等难题,提出了顶板高位近水平长钻孔瓦斯抽采技术,构建了新立矿区近距离薄煤层群煤与瓦斯共采技术体系,并在新立矿区进行了应用研究。本文在邻近层卸压瓦斯抽采技术原理分析的基础上,采用UDEC4.0数值模拟软件计算得出采空区冒落带和裂隙带高度为6~8m和18~20m。抽采结果表明,顶板高位钻孔组瓦斯抽采技术治理瓦斯效果明显,上隅角瓦斯体积分数稳定在0.8%以下,且钻孔抽采瓦斯体积分数达55%以上,抽采量达50m3/min以上,实现煤与瓦斯安全高效共采。  相似文献   

3.
为解决高瓦斯矿井采空区上隅角瓦斯超限问题,基于回采工作面回采过程中顶板破坏规律,结合顶板高位定向钻孔抽采采空区和上隅角瓦斯治理技术原理,提出采空区顶板高位定向钻孔差异化布置。通过数值模拟寺河矿E5302工作面顶板破坏规律,得到距回风侧煤壁90 m范围内不同位置张拉破坏高度关系式,为高位定向钻孔在回采面回风侧横向一定范围内差异化精准布置提供参考依据,确定采空区顶板高位定向钻孔布置层位为距顶板垂直距离30~45 m;现场试验期间,差异化布置顶板高位定向钻孔抽采瓦斯浓度高、流量稳定,整体抽采效果较好,有效抽采瓦斯时间达50 d以上,在抽采稳定时期钻场钻孔平均纯瓦斯抽采量达15.5 m~3/min,上隅角瓦斯体积分数控制在0.44%左右,保障了矿井回采期间安全。  相似文献   

4.
利用FLAC3D软件对芦岭煤矿Ⅱ817工作面顶板跨落情况进行模拟分析,初步判定了采空区上覆岩层冒落带、裂隙带和弯曲下沉带的高度,综合判定得出裂隙带岩层范围为18~37 m,合理确立了高位钻孔终孔位置为距8煤顶板20~32 m岩层范围内。在抽采效果考察中,平均每个钻孔的抽采参数瓦斯体积分数均在35%以上,钻孔抽采瓦斯体积分数最大为55.3%,采空区瓦斯治理效果显著。  相似文献   

5.
为改善成庄矿采空区高位钻孔瓦斯抽采效果,采用理论计算和数值模拟的方法研究采动裂隙演化规律,分析顶板裂隙发育范围,通过在裂隙带范围布置不同层位的高位钻孔模拟研究了其瓦斯抽采效果和瓦斯治理效果,得出了高位钻孔最佳布置层位。结果表明:顶板岩层垮落、裂隙发育贯通整体呈拱形分布,裂隙带范围为21.90~62.54 m;将高位钻孔布置在距煤层顶板45 m的位置,既可以抽采到高浓度瓦斯,又能对工作面上隅角瓦斯起到良好的治理作用;现场施工定向高位钻孔后,瓦斯抽采浓度、纯量可以在较长的一段推进度内保持较高水平,工作面回采期间,上隅角最大瓦斯体积分数为0.69%,保证了安全生产。  相似文献   

6.
采空区顶板高位走向长钻孔高效抽采瓦斯机理研究   总被引:4,自引:0,他引:4  
为了提高采空区顶板高位走向长钻孔瓦斯抽采效率,消除工作面上隅角瓦斯超限事故,以山西华晋吉宁煤业有限责任公司2102综采工作面为研究对象,采用数值模拟、理论分析与现场试验相结合的方法,利用3DEC软件模拟计算2102综采工作面回采期间采空区顶板裂隙场演化过程,根据裂隙场、应力场和应变场分布模拟结果在沿工作面推进方向上划分采空区顶板裂隙加强区范围与压实区范围,工作面推进期间煤层顶板在时间上先后经历裂隙加强区和重新压实区,处于裂隙加强区的钻孔部分为钻孔高效抽采作用区域,钻孔高效抽采段长度与钻孔高效抽采段裂隙发育程度共同决定高位走向长钻孔抽采效率,揭示了采空区顶板高位走向长钻孔高效抽采瓦斯作用机制;在此基础上,在采空区顶板裂隙带高度范围内布置多个高位试验钻孔,进行钻孔瓦斯抽采效果考察,研究结果表明:在保证高位钻孔布置于回风巷内侧顶板裂隙带前提下,最佳布孔层位为距煤层底板60 m左右,同时在高位试验钻孔作用下,上隅角瓦斯体积分数最大值由1.1%降低至0.6%,说明根据回风巷内侧采空区顶板裂隙带高度范围,布置高位走向长钻孔能显著降低上隅角瓦斯浓度。  相似文献   

7.
为了研究某煤矿厚煤层综放面开采覆岩裂隙演化和瓦斯运移规律,用理论分析和现场工程实践相结合的方法,在某矿进行了煤与瓦斯共采试验。研究得出,经过几次周期来压后,采空区的中部裂隙被压实,形成了通裂隙发育的“O”形圈;经过瓦斯抽采效果分析得出,在距离顶板大约40 m位置处、水平距回风巷33~43 m位置处,是布置抽采钻孔最合适的区域;采用顶板裂隙带钻孔+瓦斯尾巷抽采技术,可有效解决工作面回风巷上隅角瓦斯超限的问题。研究为实现煤与瓦斯共采提供了一定的技术支持。  相似文献   

8.
为降低回采工作面采空区的瓦斯涌出及上隅角瓦斯浓度,对采空区顶板裂隙变化及瓦斯流动规律进行了理论分析,基于此,对主焦煤矿21141工作面的瓦斯抽放提出了分源抽放的综合治理方法,即上隅角采用埋管抽放,顶板裂隙内瓦斯采用高位钻场钻孔抽放。应用结果表明:分源抽放技术的应用使得21141回采工作面上隅角瓦斯体积分数由原来的0.6%左右下降到0.4%,高位钻场单孔瓦斯抽放体积分数平均为34%,瓦斯流量为0.062 m3/m in,这在一定程度上降低了采空区瓦斯的涌出量,保证了工作面安全生产。  相似文献   

9.
大孔径超长定向钻孔综合瓦斯抽采技术   总被引:1,自引:0,他引:1  
为解决沙曲煤矿综采工作面上隅角和回风流中瓦斯浓度经常超限问题,在14205工作面试验了顶板岩层千米定向长钻孔抽采邻近层瓦斯与本煤层长钻孔瓦斯抽采相结合的综合瓦斯抽采方法,结果表明,顶板岩石水平长钻孔抽采浓度在60%以上,平均抽采量达13.3m3/min,本煤层长钻孔单孔瓦斯抽采浓度达15%左右,钻孔控制区域瓦斯预抽率达到35%左右,有效解决上隅角和回风流瓦斯超限问题,实现高瓦斯工作面安全高效开采.  相似文献   

10.
大直径长距离高位钻孔参数优化与实施   总被引:1,自引:0,他引:1  
为治理保护层工作面的瓦斯,平煤股份四矿施工了大直径长距离高位钻孔,钻孔终孔直径193 mm,平均孔深100 m 以上,抽采了采空区裂隙带的高浓度瓦斯,对高位钻场、钻孔参数进行了优化,并对钻孔封孔技术进行了改进.通过采取上述措施,高位钻场的抽放瓦斯体积分数增加到12%~30%,混合流量增加到25.68~45.70 m3/min,纯流量增加到3.08~8.73 m3/min,上隅角瓦斯体积分数下降到0.2%~0.6%,回风流瓦斯体积分数下降到0.2%~0.7%,保护层工作面月产原煤10万t以上,利用瓦斯日发电3.5万~3.8万kW·h,实现了煤与瓦斯共采.  相似文献   

11.
为缓解突出煤层矿井采掘衔接紧张的矛盾、实现煤巷掘进前快速消突的目标,针对传统瓦斯抽采消突方法存在的施工周期长、成本高的问题,提出利用定向钻孔预抽突出煤层煤巷条带瓦斯,采用空气复合定向钻进技术解决突出煤层定向长钻孔钻进难题,并且研制选型了配套的空气复合定向钻进装备。在青龙煤矿试验情况表明:该技术装备成孔效果显著,攻克了钻孔施工过程中存在的钻孔轨迹精确控制、下斜孔高效排渣、空气螺杆钻具正常运转等技术难题,定向长钻孔抽采瓦斯流量大、浓度高,其中21608轨顺钻场已抽采200万m3瓦斯;21601运顺钻场瓦斯抽采达标,经区域效果检验合格后已安全掘进。研究为碎软突出煤层煤巷条带消突提供了新的思路。  相似文献   

12.
梁雨剑 《江西煤炭科技》2022,(1):155-156,159
针对采用本煤层顺层抽采钻孔进行煤层瓦斯抽采时,钻孔施工量大、施工周期长、瓦斯抽采效率低等技术难题,司马矿在1208工作面应用定向长钻孔技术抽采瓦斯,现场结果表明,相比本煤层顺层钻孔瓦斯抽采技术,定向长钻孔瓦斯抽采技术可减少钻孔长度4 500 m,钻孔成孔率提高1.5倍,瓦斯抽采率提高1.7倍,取得了显著应用成效。  相似文献   

13.
煤矿井下水平定向钻孔在煤矿瓦斯抽采中具有明显的技术优势。通过对大佛寺煤矿常规钻孔工作面瓦斯治理技术的分析,指出了其中不足;经过对定向长钻孔钻进工艺、布孔技术进行分析以及通过大佛寺煤矿现场应用,得出定向长钻孔有利于实现工作面瓦斯区域集中抽采的结论;瓦斯抽采统计数据分析对比证明定向长钻孔瓦斯抽采效率要明显优于常规钻孔。  相似文献   

14.
永华能源郭村煤矿位于偃龙矿区,主采的二1煤层地质构造简单,为典型的三软煤层.该煤层瓦斯含量高,煤层透气性系数低,煤质松软、破碎,抽放钻孔成孔困难.通过采用穿层钻孔并辅助水力冲孔预抽,运输巷、回风巷顺层长钻孔抽放,工作面浅孔抽放,采空区埋管、插管抽放等方法,有效增加了煤层透气性,降低了瓦斯压力,提高了抽放率,实现了矿井的安全生产.  相似文献   

15.
 鉴于11041工作面是煤与瓦斯突出危险工作面,在该工作面上采取了顺层钻孔预抽煤层瓦斯的防突措施,吨煤抽放钻孔量为0.16m/t,瓦斯预抽率达34.72%,采前残存瓦斯含量明显低于临界值。采用单项指标法、综合指标法、残余瓦斯含量法、吨煤抽放钻孔量和煤层瓦斯预抽率对该工作面采前突出危险性进行评价,评价结论为无突出危险性,这为该工作面回采过程中制订安全技术措施提供了重要的科学依据。  相似文献   

16.
突出危险采煤工作面消突试验研究   总被引:7,自引:1,他引:6  
为了在煤与瓦斯突出矿井厚煤层开采中应用放顶煤工艺技术,在鹤壁煤业集团公司五矿3302工作面采用了本煤层密集钻孔和穿层孔综合抽放瓦斯的消突技术,吨煤抽放钻孔量达到0.08m以上,采前瓦斯抽排率达到42.9%,采前残存瓦斯含量明显低于矿井始突点煤层瓦斯含量.采用单项指标法、综合指标法和残余瓦斯含量法对采前突出危险性进行评价,评价结论为无突出危险.据此采用放顶煤工艺进行生产,直至工作面回采结束,杜绝了煤与瓦斯突出事故.  相似文献   

17.
申忠生  刘明义 《现代矿业》2020,36(9):173-176
为了有效解决霍尔辛赫煤矿松软煤层瓦斯抽采钻孔堵孔、塌孔的问题,研发了一种瓦斯抽采钻孔稳定性维护装置,其主要由煤层瓦斯采集系统、可旋转筛网清洁系统、瓦斯抽采动力系统和稳固系统组成,可实现对不同直径瓦斯抽采钻孔的稳定性维护,并成功进行了现场实测及应用。研究结果表明:经过维护装置支撑处理后,钻孔变形有显著减小,根据给出的钻孔变形维护效率表达式,得到钻孔维护效率在30%左右;维护处理后,钻孔瓦斯涌出速度、涌出总量与有效抽采时间均有所增加,与无维护处理相比,瓦斯涌出总量增长了20%以上,瓦斯有效抽采时间增加了4 d左右。  相似文献   

18.
“三软”厚煤层高瓦斯综放面高抽巷瓦斯抽放技术研究   总被引:3,自引:0,他引:3  
介绍了在“三软”厚煤层高瓦斯综放工作面实施沿煤层顶板做高抽巷进行采空区瓦斯抽放技术,解决“三软”厚煤层综放面过高瓦斯区瓦斯超限的问题,使最大绝对涌出量达40m3/min的综放工作面在配风1200m3/min的情况下,工作面上隅角及回风流瓦斯浓度控制在0.6%以下,并创造了“三软”厚煤层综放面单面月产17.6万t的全国最高记录,实现了矿井高产高效。  相似文献   

19.
淮南矿业集团潘三煤矿是典型的煤与瓦斯突出矿井。针对潘三矿穿层钻孔预抽煤层瓦斯防突措施消突周期长,工程量大,掘进速度慢等问题,选择17171(1)轨道、运输顺槽试验顺层钻孔预抽煤巷条带煤层瓦斯区域防突措施。自执行顺层长钻孔预抽煤层瓦斯防突措施以来,煤层最大残存瓦斯含量为4.17 m3/t,最大残余瓦斯压力为0.32 MPa,钻屑量S值在4.0~5.4 kg/m之间,钻孔瓦斯涌出初速度q在0.9~2.7 L/min之间,均无超标现象,实现瓦斯零超限,巷道瓦斯涌出量减小,有效地消除了煤与瓦斯突出危险性,实现工作面安全快速掘进。  相似文献   

20.
芦岭煤矿煤层为高瓦斯极松软强突出低透气性煤层,为提高区域瓦斯治理效果,在穿层钻孔预抽一段时间后,采取冲煤卸压措施,能够有效降低煤层瓦斯压力,改善区域瓦斯治理效果。通过研究和现场考察,确定了合理的钻孔施工参数和冲煤卸压施工工艺。冲煤卸压措施实施后,瓦斯压力降低了71.4%,瓦斯含量降低了25.1%,取得了较好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号