首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 953 毫秒

1.  铜硫等可浮与优先浮选工艺技术研究  
   叶岳华  曾克文  王立刚  孙志健  田祎兰  刘万峰  刘水红《中国矿业》,2014年第23卷第14期
   云南某铜硫矿铜品位较低,含铜矿物嵌布粒度不均匀,且与主要的含硫矿物磁黄铁矿共生关系密切,脉石矿物复杂,因此,本文对该矿进行了详细的工艺矿物学及选矿试验研究。根据矿石特点,分别进行了铜硫等可浮与铜优先浮选工艺流程对比试验研究。采用铜硫等可浮-铜硫分离浮选工艺流程最终实验室闭路试验结果为铜精矿含铜18.97%,铜回收率81.08%;硫精矿含硫37.71%,硫回收率26.09%。采用铜优先浮选工艺流程最终实验室闭路试验结果为铜精矿含铜20.12%,铜回收率82.15%;硫精矿含硫37.41%,硫回收率84.48%。    

2.  蒙古某铜矿伴生金银浮选回收工艺技术研究  
   叶岳华  王立刚  胡志强  陈旭波  李俊旺《中国矿业》,2017年第26卷第S2期
   蒙古某铜矿含铜0.61%,含硫2.57%,含金0.80g/t,含银15.12g/t,矿石中铜矿物主要为黄铜矿、斑铜矿及辉铜矿,脉石矿物有石英、长石、云母等。矿石中金、银等有价元素与黄铜矿、黄铁矿等金属矿物之间嵌布关系密切。本文研究针对该矿石特征,采用铜优先-铜和脉石浮选分离工艺流程,粗选采用选择性捕收剂BKH优先选铜,精选采用新型抑制剂BKL抑制脉石矿物,最终获得实验室闭路试验结果为:铜精矿含铜24.85%,铜回收率81.88%;含金21.87g/t,金回收率55.00%;含银515.80g/t,银回收率68.89%。    

3.  内蒙古某难选铜锌硫化矿浮选分离试验研究  
   朱一民  周菁  张晓峰  周玉才  焦科诚  潘高产  李天霞  胡婷婷《有色金属(选矿部分)》,2014年第4期
   针对内蒙古某铜锌硫化矿中次生硫化铜矿物含量高、部分锌矿物与铜矿物之间共生关系密切和铜锌分离难的问题,试验研究采用铜锌等可浮、混合精矿再磨后铜锌浮选分离、锌浮选的工艺流程,以CY为调整剂消除矿石中次生铜矿物在磨矿过程中产生的铜离子对锌、硫矿物的活化作用,应用选择性好的铜矿物捕收剂WR,实现铜锌的有效分离。试验室闭路试验获得的浮选指标为:铜精矿中含铜25.28%、铜回收率为81.50%,含锌7.33%;锌精矿平均含锌44.38%,锌总回收率为82.57%。    

4.  某细—微细粒嵌布的硫化铜矿石浮选试验  
   陈水波《金属矿山》,2017年第11期
   某硫化铜矿石中的金属矿物主要为斑铜矿、黄铜矿及辉铜矿,黄铁矿和硫铜钴矿微量,脉石矿物主要为石英.矿石中铜矿物嵌布粒度极不均匀,少部分铜矿物嵌布粒度较粗,主要为细—微细粒嵌布的铜矿物,细者甚至小于10μm.为确定该矿石的高效选矿工艺进行了选矿试验.结果表明:铜品位为3.85%的矿石在磨矿细度为-53μm占80%的情况下,采用2粗2精3扫流程进行粗粒开路浮选,粗粒浮选中矿集中再磨至-10μm占80%的情况下,采用1粗1精流程进行细粒开路浮选,可获得铜品位为41.86%、回收率为59.01%的粗粒精矿,铜品位为33.27%、回收率为26.43%的细粒精矿,总精矿品位为38.76%、回收率为85.45%.采用粗细分级分选开路浮选流程回收矿石中的硫化铜,既解决了含铜粗粒连生体在流程中的循环,又发挥了粗细分选优势,还避免了微细粒中矿返回对流程的影响,是粒度极不均匀嵌布的硫化铜矿物的高效回收工艺.高品位微细粒中矿中的铜将采用生物氧化浸出工艺回收有利于提高总铜回收率.    

5.  某低品位微细粒难选铜矿的浮选试验研究  
   王星  王三海《金属材料与冶金工程》,2015年第2期
   某复杂低品位微细粒嵌布铜矿石,原矿铜品位0.55%,铜主要呈黄铜矿和铜蓝的形式存在且与其他矿物嵌布关系复杂,单体解离粒度微细。原矿在磨矿细度为-0.074 mm含量73.43%,采用石灰和亚硫酸钠作抑制剂,YS-1作铜矿物捕收剂,优先浮选铜,尾矿进一步浮选硫,闭路试验获得铜精矿铜品位18.18%,回收率79.89%,硫精矿硫品位43.68%,回收率87.07%。    

6.  新疆某低品位钼矿石高效利用选矿试验  
   杨凯志  邱显扬  汪泰  李汉文  王洪君《金属矿山》,2015年第2期
   新疆某低品位钼矿石钼品位仅0.076%。矿石中除钼外,还伴生含量为0.033%的铜和含量为1.232%的硫。虽然钼、铜、硫主要以辉铜矿、黄铜矿、黄铁矿形式存在,但它们共生关系密切,分离困难。根据矿石性质开展综合回收钼、铜、硫的选矿试验,首先将原矿粗磨至-0.074 mm占85%后进行钼铜硫的混合浮选,然后将钼铜硫混合精矿细磨至-0.043 mm占95%后进行钼铜与硫的分离浮选,最后对钼铜混合精矿进行钼与铜的分离浮选,并在钼铜硫混合浮选过程中使用新型捕收剂GZW101和新型抑制剂GTS、在钼铜分离浮选过程中使用新型抑制剂GLN,最终获得了钼品位为47.03%、钼回收率为73.20%的钼精矿以及铜品位为14.89%、铜回收率为77.26%的铜精矿和硫品位为54.26%、硫回收率为88.94%的硫精矿,从而为该矿石的高效利用提供了依据。    

7.  某复杂硫化铜矿伴生磁铁矿提铁降硫试验研究  
   邱廷省  朱华磊  方夕辉  陈江安《矿山机械》,2014年第3期
   某复杂硫化铜铁矿石原矿含铜0.36%,含硫34.32%,含全铁40.07%,其中磁性铁6.20%左右,硫化铜、黄铁矿、磁黄铁矿及磁铁矿共生关系紧密,矿石性质复杂,分选难度大。原生产工艺为经一段磨矿后优先选铜,浮选铜尾矿再磁选回收磁铁矿,但铁精矿中含硫较高,达4%~5%,产品销售困难。在工艺矿物学研究的基础上,采用优先浮选回收硫化铜矿,选铜尾矿磁选回收磁铁矿,磁选铁精矿采用组合活化剂进行活化浮选脱硫。开展了磨矿细度条件、硫化铜矿浮选工艺条件、磁选工艺条件及磁选精矿活化浮选工艺条件等试验。结果表明,在磨矿细度为-0.074 mm占75%的条件下,经一粗二精一扫工艺流程获得了含铜18.59%,回收率为82.00%的铜精矿;选铜尾矿在磁场强度为1 400A/m的条件下磁选选铁,磁选铁精矿采用L1+L2组合活化剂进行活化浮选脱硫,经一粗一扫的工艺流程选别后获得了含铁66.14%,含硫1.03%,磁性铁回收率为64.97%的铁精矿,其中含硫比原生产工艺降低了近4%。    

8.  某铜矿石可选性试验  
   张汉泉《中国矿业》,2012年第21卷第9期
   某铜矿石铜矿物主要为黄铜矿,脉石矿物中主要是斜长石,分选过程中要求同时得到铜精矿和硫精矿。根据矿石性质,通过浮选条件试验和流程试验,结果如下:采用混合浮选—分离浮选流程,当磨矿细度为75%-0.076mm左右时,可获得的铜精矿含铜25.31%、含金6.7g/t,铜、金回收率分别为87.50%、84.52%。试验中未获得合格的硫精矿;采用一粗一扫二精选别流程,可获得单一的铜精矿。其铜品位与回收率分别为19.13%与88.13%,铜精矿含金5.33g/t,金的回收率为89.55%。方案Ⅰ铜精矿指标较好,方案Ⅱ流程简单、生产成本低。    

9.  E908捕收剂优先浮选高硫含铜矿石的试验研究  
   黄建平  戴子林  危青  李桂英  张恩普《矿产综合利用》,2016年第3期
   在低碱度条件下,研究了以E908为捕收剂,腐殖酸钠为抑制剂对某高硫含铜矿石的优先浮选工艺.试验结果表明,捕收剂E908对硫化铜矿具有较好的捕收性能,腐殖酸钠是铜硫浮选分离时黄铁矿的优良抑制剂.优先浮选流程闭路试验得到铜精矿铜品位19.87%、银品位605.84g/t,铜回收率87.76%、银回收率84.51%的浮选指标.    

10.  新疆某含石墨高钙次生硫化铜矿石选矿试验  
   张晓峰《金属矿山》,2018年第1期
   新疆某含石墨高钙型次生硫化铜矿石铜品位为1.95%,次生硫化铜占总铜的92.82%,主要铜矿物为斑铜矿、辉铜矿、蓝辉铜矿、铜蓝,其他金属矿物有黄铁矿等;脉石矿物以方解石、石英、云母、高岭石等为主,并含有少量片状石墨。铜矿物主要呈浸染状、团粒状、不连续脉状、细脉状产出,粒径主要为0.037~0.15 mm,与黄铁矿、石墨等脉石矿物嵌布关系密切。为了确定该矿石的合适开发利用工艺,进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占85%的情况下进行1粗3精2扫流程处理,获得了铜品位为23.83%、铜回收率为75.06%的铜精矿1;精选尾矿合并进行1粗2扫浮选,精选尾矿合并粗选的粗精矿再磨至-0.038 mm占97%后进行3次中矿精选,获得了铜品位为13.01%、铜回收率为14.08%的铜精矿2,综合铜精矿铜品位为21.07%、回收率为89.14%的铜精矿,较好地实现了铜矿物的分离回收。    

11.  贵州某铜尾矿铜金回收浮选试验  
   刘豹  王梓  孙乾予  莽昌烨《金属矿山》,2015年第1期
   贵州某铜尾矿-200目含量为40.17%,主要金属矿物有黄铜矿、黄铁矿、磁黄铁矿、斑铜矿,并伴生有少量的金、银。黄铜矿与黄铁矿、磁黄铁矿等共生关系密切,呈细粒、微细粒不均匀嵌布,部分粒度极细,难以单体解离;金主要为裸露金和黄铜矿包裹金。为了高效开发利用该二次资源,进行了铜金综合浮选回收试验。结果表明,在磨矿细度为-200目占80%的情况下采用1粗2精2扫、精矿2再磨至-325目占85%后2次精选、中矿顺序返回流程处理该试样,最终获得了铜、金、银品位分别为13.05%、18.75 g/t、229.62 g/t,铜、金、银回收率分别为58.70%、56.66%、43.72%的铜金精矿。    

12.  高效捕收剂ZA在铜硫分离浮选中的应用  被引次数:2
   邹坚坚  胡真  李汉文《金属矿山》,2015年第6期
   西南某多金属硫化矿主要有价元素为铜、锡、硫,铜品位为1.05%、锡品位为0.28%、硫品位为7.19%,伴生银品位为13.20 g/t。铜主要以硫化铜形式存在,占有率为93.60%。现场采用铜硫混合浮选—铜硫分离浮选、浮选尾矿摇床重选选锡的浮重联合流程综合回收矿石中的铜硫银锡(银进入铜精矿),存在石灰用量偏大,碱度高,铜和银回收率偏低的问题。为探索低碱度浮选回收铜银的可能性,以复配药剂ZA为铜矿物捕收剂进行了试验研究。结果表明:将磨矿细度为-0.074 mm占75%条件下以硫酸铜为活化剂、丁基黄药为捕收剂,经1粗2精2扫铜硫混合浮选获得的铜硫混合精矿,以石灰为抑制剂在再磨细度为-0.043 mm占85%、pH=10.5的低碱条件下经1粗3精2扫铜硫分离,最终获得了铜品位为25.16%、银品位为212.2 g/t,铜、银回收率分别为91.75%、61.18%的铜精矿及硫品位35.32%、硫回收率79.08%的硫精矿,有效地实现了矿石中铜银硫的分离富集回收,尤其是强化了游离银的选矿富集。试验结果对伴生贵金属硫化矿中贵金属的综合回收具有借鉴意义。    

13.  云南思茅多金属硫化矿混合精矿再磨浮选工艺  
   张铁民 方建军 王 珊《有色金属工程》,2013年第3卷第4期
   云南思茅石英脉多金属硫化矿,回收元素主要是金、铜和硫。金铜矿物与黄铁矿紧密共生,嵌布粒度极细。对比试验表明,混合精矿再磨后分离浮选指标较好,铜精矿铜品位22.40%,金品位218.07 g/t,铜回收率94.35%,金回收率81.35%。硫精矿含铜0.154%,含金17.33 g/t。    

14.  云南某低品位斑岩型硫化铜矿选矿试验研究  被引次数:2
   廖德华  鲁军  石仑雷  陈晓芳《有色金属(选矿部分)》,2014年第2期
   介绍了云南某低品位斑岩型硫化铜矿的矿石性质,针对有用矿物的嵌布特征制定了选矿工艺。通过工艺对比和优化,确定的优先浮选工艺为:在磨矿细度-75μm占92%时闭路流程试验可获得产率1.99%、铜品位20.97%、金品位12.18 g/t、铜回收率92.35%、金回收率73.87%的铜精矿和产率2.58%、硫品位46.16%、硫回收率60.77%的硫精矿,该工艺综合回收了矿石中的有价元素。    

15.  江西某铜矿石工艺矿物学分析  
   杨飞  刘勇  刘猛  陈果《现代矿业》,2018年第6期
   为给江西某铜矿石的选冶利用提供参考,进行矿石工艺矿物学分析。结果表明,该矿石铜品位0.57%,含硫14.05%,铜、硫是主要可利用元素。铜主要以硫化铜的形式存在,黄铜矿和铜蓝是主要载铜矿物,其中的铜占总铜的95.56%。脉石矿物以石英、萤石、钙铁铝榴石、绢云母、长石等为主。黄铜矿与脉石、黄铁矿、闪锌矿连生关系较为密切,铜蓝呈凝胶状集合体形式存在,多分布在黄铁矿、辉铜矿边沿,形成反应边结构。黄铜矿与铜蓝的嵌布粒度均较细,需通过细磨才能单体解离。为获得较高的铜回收率,一是要充分磨矿;二是要加强黄铜矿的回收。    

16.  某高硫铁铜矿石铜硫选矿试验  
   胡文英  伍红强《金属矿山》,2018年第7期
   粤北某高硫铁难选铜矿石中铜矿物绝大部分为黄铜矿,含硫矿物主要为黄铁矿,其次为磁黄铁矿,脉石矿物主要为石英、正长石、白云母、透闪石、方解石、绿泥石,主要有回收价值的元素为铜、硫。原生硫化铜占总铜的87.60%,次生硫化铜占总铜的11.81%;非磁性硫占总硫的62.02%,磁性硫占总硫的37.62%。为确定该矿石的合理铜、硫回收工艺,进行了选矿试验研究。结果表明,矿石在磨矿细度为-0.074 mm占75%的情况下,采用1粗3精2扫、中矿顺序返回(精选1、扫选1中矿合并再磨后返回)流程浮铜,浮铜尾矿1次弱磁选磁黄铁矿,弱磁选尾矿1粗2扫流程浮选黄铁矿,可获得铜品位为19.89%、铜回收率为82.07%的铜精矿,硫品位为33.18%、硫回收率为29.11%的磁性硫精矿,以及硫品位为43.75%、硫回收率为55.26%的硫精矿,总硫回收率达84.37%,该工艺有效地回收矿石中的铜、硫资源。    

17.  某高效铜捕收剂在铜硫矿石中的试验研究  
   杨俊彦  叶雪均  秦华伟  缪飞燕《有色金属(选矿部分)》,2013年第5期
   某铜矿胶状黄铁矿含量较高,属难选矿石.针对其现场铜选别指标低的问题,进行高效铜捕收剂浮选试验研究.试验采用铜优先浮选工艺,高效捕收剂Y10作捕收剂、石灰法抑硫浮铜,获得了铜精矿铜品位为22.90%、回收率为86.83%的良好试验指标.    

18.  刚果(金)某高泥高氧化率铜矿石选矿试验  
   魏转花《金属矿山》,2016年第9期
   铜品位为3.70%的刚果(金)某高泥氧化型铜矿石的氧化率达75.81%,主要铜矿物为孔雀石,其次为硅孔雀石、辉铜矿等。为了确定该矿石的合适选矿工艺流程,进行了选矿试验。结果表明:矿石在磨矿细度为-74μm占70%的情况下采用1次浮选脱泥、2粗2精2扫硫化浮选工艺处理,可获得铜品位为26.82%、铜回收率为72.48%的铜精矿;以硅孔雀石为主要含铜矿物的浮选尾矿采用摇瓶酸浸工艺处理,在硫酸用量为100 kg/t、液固比为3∶1、浸出时间为2 h的情况下,铜作业浸出率可达86.84%;浮选+酸浸工艺的总铜回收率为96.38%。    

19.  硫化铜浮选及滑石高效抑制剂的研究  
   孙忠梅《黄金》,2016年第3期
   某氧化铜矿矿石氧化率73.5%,次生硫化铜(26.02%)主要以辉铜矿为主。矿石中滑石含量较高,对硫化铜的浮选产生不利影响。根据矿石性质,进行了硫化铜矿物浮选条件及滑石抑制剂SY作用机理的研究。其结果表明:采用捕收剂Z-200、滑石高效抑制剂SY进行浮选闭路试验,可获得铜品位60.72%、回收率23.55%的硫化铜精矿;抑制剂SY可有效降低捕收剂与滑石表面的作用,达到了抑制滑石的效果。    

20.  难选铜锌多金属硫化矿浮选试验研究  被引次数:1
   何海涛  田锋  胡保栓  孙运礼《矿产综合利用》,2012年第2期
   我国某难选铜锌多金属硫化矿,铜锌矿物共生关系密切,且次生硫化铜矿物的含量较高,致使铜锌矿物分离难度较大。依据矿石特性,在试验过程中采用了新型抑制剂T9和ZnSO4组合作为作为锌矿物的抑制剂,采用捕收力强、选择性较好的新型高效选矿药剂酯-80作为铜矿物的捕收剂,进行了抑锌浮铜优先浮选试验研究,实现了铜锌矿物的有效分离,实验室闭路试验获得的铜精矿品位为20.28%,回收率为92.98%,锌精矿品位52.85%,回收率84.89%,分离指标较为理想。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号