首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用自制的胺类萃取剂N1633作萃取剂, 考察了其在钨萃取冶金中的性能。当有机相组成为40%N1633+40%异辛醇+磺化煤油(体积比), 在pH=8.27、相比(O/A)为1∶1、振荡时间10 min、萃取温度25 ℃时, 对WO3含量116.25 g/L的钨酸钠溶液进行萃取, 单级萃取率大于99%。绘制了N1633的萃取等温线, 经过三级萃取饱和容量达到109.03 g/L。用2.5 mol/L的氨水对负载有机相进行反萃, 相比2.5∶1时, 反萃液中WO3浓度达到174.31 g/L。绘制了负载有机相的反萃等温线, 理论上以相比1.25∶1进行四级逆流萃取可将有机相中的钨基本反萃, 反萃液中WO3的饱和反萃浓度达到202.82 g/L。采用0.6 mol/L的硫酸以相比2∶1进行酸化再生后, N1633仍具有良好的萃取性能。  相似文献   

2.
以P204为萃取剂、硫酸溶液为反萃剂,在室温下对贵州某钼镍钒多金属矿石的镍钒浸出液进行钒的萃取-反萃取试验,确定了萃取时适宜的工艺参数为母液pH=2.5,有机相中P204、TBP、磺化煤油的体积比=20∶5∶75,相比(O/A)=1∶2,萃取时间5 min,反萃取时适宜的工艺参数为硫酸溶液浓度2 mol/L、相比(O/A)=2∶1、反萃时间4 min。在所确定的工艺参数下进行5级萃取-反萃取,钒的总萃取率达98.7%、总反萃率达99.8%、总回收率达98.5%。  相似文献   

3.
针对陕西某地低热值含钒石煤燃烧灰渣的硫酸浸出液, 采用溶剂萃取法除杂并富集钒。结果表明:浸出液经中和还原处理后, 采用12.5% P204+5% TBP+82.5%磺化煤油进行4级逆流萃取, 相比(O/A)为2, 萃原液pH值为2, 振荡时间为2 min, 静置1 min, 钒萃取率可达到99.31%。采用4级逆流反萃, 反萃剂硫酸1.5 mol/L, 相比(O/A)为4, 振荡4 min, 静置1 min, 钒反萃率为96.94%。  相似文献   

4.
硫酸型季铵盐从石煤苏打浸出液中萃取钒的研究   总被引:1,自引:0,他引:1  
采用自制硫酸型季铵盐作萃取剂,直接从石煤苏打浸出液中萃取钒,主要考察了有机相组成、浸出液p H值、相比O/A、萃取温度、振荡混合时间对钒萃取率的影响,并考察了不同反萃剂对钒反萃的影响。实验结果表明,当有机相组成为8%硫酸型季铵盐+5%仲辛醇+87%磺化煤油,料液p H=9.5,相比O/A=1/1,萃取温度为25℃,振荡混合时间为3 min时,钒单级萃取率可达98%以上;用0.5 mol/L Na OH+1.5 mol/L Na2CO3作反萃剂,钒反萃率为94.14%,用6 mol/L NH3·H2O+3 mol/L(NH4)2SO4作反萃剂,钒反萃率为57.58%。  相似文献   

5.
研究亚砷酸还原终液萃取钼负载N235的洗涤和反萃过程。在稀硫酸浓度为0.10 mol/L、相比O/A=1∶1、混合振荡时间为5 min、温度为常温的洗涤条件下,砷洗涤率为92.5%,钼损失率为0.5%。经过三级错流洗涤,砷总洗涤率达到99.2%,钼损失率为0.9%。洗涤后液在氨水浓度为5 mol/L,相比O/A为5∶1,振荡时间7 min,温度为常温的反萃条件下,钼单级反萃率为95.2%,二级错流总反萃率为99.7%。  相似文献   

6.
废印刷线路板微生物浸出液中铜的选择性萃取   总被引:3,自引:0,他引:3  
张承龙  王景伟  白建峰  关杰 《金属矿山》2009,39(10):158-160
对萃取法分离废印刷线路板微生物浸出液中的铜进行了研究。结果表明:选用N902为萃取剂,可很好地选择性萃取浸出液中的铜,在萃取剂浓度为10%,萃取相比为1∶1,萃取搅拌时间为5 min的条件下,铜的萃取率可达99.51%,Cu与Fe的分离系数为2 058;以硫酸溶液为反萃剂对萃取获得的负载有机相进行反萃取,在硫酸溶液浓度为1.8 mol/L,反萃取相比为1∶1,反萃取搅拌时间为5 min的条件下,铜的反萃率可达93.57%。  相似文献   

7.
研究用胺类萃取剂N235从某铜冶炼厂烟灰处理过程高砷高酸硫酸铜溶液萃取镉。结果表明,在溶液含0.2 mol/L氯离子条件下,以20%N235+5%仲辛醇+75%磺化煤油为萃取剂,4 mol/L的氨水为反萃剂,在适宜相比条件下,三级逆流萃取镉萃取率可达99.4%,七级逆流反萃镉反萃率可达96%,获得含镉为6.77 g/L的反萃液,实现镉与铜砷等元素的高效分离以及镉的富集。  相似文献   

8.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

9.
将P204与Cyanex272构成混合萃取剂用于萃取红土镍矿浸出液中的Co、Mn、Fe。系统研究了协同萃取的最优萃取剂比例、水相pH值、萃取平衡时间、萃取温度及反萃的最合适酸浓度。结果表明,有机相比例P204∶Cyanex272∶TBP∶磺化煤油=5∶15∶5∶75,待处理溶液pH值为4.5、萃取温度60℃、平衡时间8min为最佳萃取条件;反萃工序中,采用50g/L的H2SO4溶液反萃钴,110g/L的H2SO4溶液反萃锰,7mol/L的HCl溶液反萃铁可获得较好的反萃效果。  相似文献   

10.
对新型萃取剂G8315从湿法冶金系统的含锗沉矾后液中萃取回收锗的性能进行了研究。结果表明, 有机相中G8315的浓度、相比、萃取时间、沉矾液中硫酸浓度等因素对锗的萃取都有显著的影响。常温下萃取工艺条件为: G8315的浓度(体积分数)为10%, 相比O∶A=1∶2, 料液的硫酸浓度为45 g/L, 萃取时间为3 min。在此条件下进行单级萃取, 锗的萃取率为83.46%;反萃的最佳条件为: 氢氧化钠的浓度为6 mol/L, 相比为O∶A=2∶1, 反萃时间为2 min, 在此条件下进行两级错流反萃, 锗的反萃率高达96.5%。  相似文献   

11.
采用有机协同萃取剂将氧氯化锆母液中的锆萃取到有机相中得到含锆萃取物, 锆萃取物经洗涤、反萃、氨沉和灼烧得到核能级氧化锆产品。试验结果表明:当料液中游离酸酸度为5 mol/L, 有机相组成为20%TOPO+10%Cynex272+70%磺化煤油, 萃取相比为2〖DK〗∶1时, 锆铪分离效果较好, 锆萃取率达到98.68%;有机相洗涤试验中铪反洗率为97.33%, 锆损耗率仅1.25%;盐酸酸度为0.5 mol/L时, 锆反萃效果较佳, 达到98.90%。最终制得的氧化锆产品纯度达到99.90%, 铪含量仅为0.0030%。  相似文献   

12.
以沉钒尾液为研究对象,采用Cyanex272为萃取剂,分别考察了萃取与反萃取条件对萃取提钒过程的影响。研究结果表明: 在初始pH=2.25、萃取剂体系为20%Cyanex272+80%磺化煤油、相比A/O=1∶1、萃取时间5 min条件下进行三级逆流萃取,在反萃剂硫酸浓度0.75 mol/L、相比O/A=4∶1、反萃时间5 min的反萃条件下,经三级逆流反萃后,最终钒回收率可达99.3%,锰、镁、钙去除率分别为98.8%、99.6%和98.7%,实现了沉钒尾液中残留钒的高效回收与尾液中有害金属元素的脱除。  相似文献   

13.
吴展  李伟  陈志华  宁瑞 《矿冶工程》2013,33(2):105-107
采用高效萃取剂AD100从粗硫酸镍溶液中萃取回收金属铜, 考察了初始pH值、相比(A∶O)、萃取剂体积浓度、反应时间等因素对铜回收率的影响。实验结果显示, 在最优的条件下, 即: 初始pH值为2.0, 相比A∶O=3∶1, 萃取剂体积浓度为25%, 萃取时间5 min, 常温下一级萃取即可回收其中94%以上的铜, 铁、镍的萃取率分别低于0.05%和0.01%。对负载有机相进行反萃, 结果显示, 采用2 mol/L的硫酸在相比为1∶1的条件下一级反萃可回收95%的铜。  相似文献   

14.
以硫酸为浸出剂,进行了酸浸初步分离铁、钪的研究,考察了反应时间、反应温度、液固比、硫酸浓度等对浸出率的影响。结果表明,在40 ℃、液固比10∶1、硫酸浓度10 mol/L条件下浸出30 min,铁、钪浸出率分别为11.32%、58.41%。酸浸铁、钪的动力学研究结果表明,赤泥酸浸铁的过程符合未反应收缩核模型,受化学反应控制,其表观活化能为41.79 kJ/mol;而赤泥酸浸钪的过程符合多相液固区域反应动力学特征,受扩散控制,其表观活化能为6.72 kJ/mol。  相似文献   

15.
P507从硫酸体系中萃取镓的研究   总被引:3,自引:0,他引:3  
基于P507诸多优点及镓提取现状, 对P507从硫酸体系中萃取镓进行了研究, 分别考察了料液酸度、萃取剂浓度、时间、浓度、温度等因素对萃取与反萃的影响并绘制等温线, 结果表明, 在最佳条件下, 采用15%P507(体积分数)+磺化煤油作为有机相, 按相比O/A=1∶4, 经过3级逆流萃取, 萃取率可达到98.56%, 负载用60 g/L H2SO4溶液反萃, 按相比O/A=5∶1, 经过5级逆流反萃, 反萃率达98.02%, 镓富集近20倍。  相似文献   

16.
研究用萃取法从硫酸镍钴溶液中脱除镉。实验采用10 %N235 + 5 %TBP+85 %煤油的油相为萃取剂,稀硫酸为洗涤剂,氢氧化钠溶液为反萃剂。实验结果表明,萃取的最佳条件是:添加氯化钠的量为18 g/L,油水比为1:2、常温萃取5 min,三级逆流萃取率达99.4 %。反萃的最佳条件是:氢氧化钠溶液浓度为120 g/L、油水比为4:1、常温反萃5 min,反萃率达到98.0 %,实现了镉从硫酸镍钴溶液中脱除的目的。  相似文献   

17.
研究了用N263从氯化物体系中萃取Zn2+、Fe2+和Fe3+,考察了振荡时间、萃取剂浓度、改性剂浓度、相比(O/A)、盐酸浓度对Zn2+、Fe2+和Fe3+萃取率的影响。结果表明,在有机相组成为20% N263+20%正己醇+60% 260#溶剂油、相比O/A=1 GA6FA 1、振荡时间5 min和25℃条件下,Zn2+、Fe2+和Fe3+的单级萃取率分别为90.97%、0.79%和75.85%,分离系数βZn2+/Fe2+和βZn2+/Fe3+分别为1 260和3.21。经过2级逆流萃取,水相中Zn2+浓度从9.61 g/L降至0.36 g/L,负载有机相采用0.5 mol/L H2SO4反萃,Zn2+的反萃率为41.86%,Fe3+的反萃率大于97%。N263萃取金属离子的机理是阴离子交换反应,计算了萃取反应相关的热力学函数值,结果表明,N263萃取Zn2+为放热反应,Fe3+的萃取反应为吸热反应,常温下Zn2+和Fe3+的萃取反应均可自发进行。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号