首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
澳大利亚Caim Hill磁铁矿选矿试验研究   总被引:2,自引:0,他引:2  
针对澳大利亚Cairn Hill含铜、金的磁铁矿矿石,进行了先磁后浮及先浮后磁两大原则流程方案的选矿试验,并在先浮后磁的浮选方案中又进行了铜优先浮选流程和铜硫混合浮选两种流程方案试验。最终确定优先浮选铜、后浮选硫、尾矿弱磁选铁的先浮后磁联合工艺。小型闭路试验获得了铜品位21.15%、铜回收率88.94%、含金4.10g/t、金回收率49.50%的铜精矿和铁品位70.68%、铁回收率92.14%的铁精矿,以及硫品位40.58%、硫回收率57.80%的硫精矿。  相似文献   

2.
某铜铅锌多金属矿含铜0.38%、铅2.16%、锌2.72%,伴生银204.54g/t,在对其进行工艺矿物学基础上,研究采用“铜铅混浮—铜铅分离—尾矿选锌”工艺流程进行试验,最终获得含铜20.12%、回收率为73.21%、含银8622.97g/t的铜精矿,含铅56.12%、回收率为84.47%、含银1559.01g/t的铅精矿和含锌51.87%、锌回收率80.80 %的锌精矿。  相似文献   

3.
四川某铜铅锌多金属矿含铜0.38%、铅2.16%、锌2.72%,伴生银204.54 g/t,在工艺矿物学研究的基础上,采用"铜铅混浮—铜铅分离—尾矿选锌"工艺流程浮选,最终获得含铜20.12%、铜回收率为73.21%、含银8 622.97 g/t的铜精矿,含铅56.12%、铅回收率为84.47%、含银1 559.01 g/t的铅精矿和含锌51.87%、锌回收率80.80%的锌精矿。  相似文献   

4.
老挝某铜铅锌多金属矿主要有用元素为铜、铅、锌及伴生元素银。针对矿石中有用元素共生关系密切和嵌布粒度细的特点,在探索实验的基础上开展了铜、铅、锌依次优先浮选的条件实验及流程结构优化实验。通过硫酸调浆,在弱酸性介质中实施快速优先浮铜、选铜中矿返回选铅的新工艺,在原矿含Cu 2.07%、Pb 5.76%、Zn 2.95%、Ag 443 g/t的情况下,闭路实验获得铜精矿含Cu 20.18%、Pb 10.32%、Zn 1.52%,Cu回收率达到82.40%,且伴生银在铜精矿中含量高达2738 g/t,回收率为52.00%;铅精矿含Pb 45.35%、Cu 2.43%、Zn 3.34%,Pb回收率达到71.54%;锌精矿含Zn 42.21%、Cu 0.07%、Pb 2.55%,Zn回收率达到70.15%。成功地实现了铜、铅、锌的高效分选及伴生银的综合回收,为该资源开发利用提供了技术参考。   相似文献   

5.
新疆某深部高硫铜锌矿石含铜1.33%、锌1.11%、硫30.68%,伴生金、银品位分别为0.23g/t和22.51g/t,主要有用矿物为黄铜矿和闪锌矿,未解离的铜锌矿物主要与黄铁矿贫连生,粒度较细。针对此特点,引进超细磨设备,采用“铜锌混浮—粗精矿再磨—抑锌浮铜—铜尾选锌”的选矿工艺进行综合回收,最终可获得铜精矿含铜28.89%、铜回收率87.77%、含锌2.14%、含金1.18g/t、含银143.63g/t,锌精矿含锌53.55%、锌回收率76.54%、含铜1.45%、含金0.97g/t、含银99.84g/t的良好技术指标。  相似文献   

6.
某复杂多金属矿含有铜、银、铅、锌等多种有用组分, 具有较高经济价值。为综合回收有用金属, 采用优先浮选工艺, 先混合浮选铜铅, 再抑铅浮铜, 银随铜进入铜精矿产品。原矿含铜0.58%, 含银163.82 g/t, 最终获得铜精矿含铜17.05%、铜回收率为77.62%, 含银5 623.6 g/t, 银回收率90.25%, 有效实现了铜及银的回收。  相似文献   

7.
某高硫尾矿中铁矿物的回收试验研究   总被引:2,自引:1,他引:1  
安徽某硫铁矿矿石属低铜高硫矿石, 含铜0.3%、硫34.95%、铁42.64%, 目前采用优先浮铜工艺, 产出铜精矿和硫精矿, 铁未回收。针对该矿物采用先浮后磁常规方法得到铁精矿, 再以2#油作起泡剂, 硫酸和硫酸铜作调整剂和活化剂, 煤油和丁黄药作捕收剂进行了铁精矿脱硫全流程闭路试验, 可得到含铜10.98%、铜回收率77.78%的铜精矿及含铁65.38%、含硫0.84%、铁回收率11.78%的铁精矿, 效果较理想, 能有效提高资源综合利用率。  相似文献   

8.
李鹏飞  刘曙  汤启宙  王静 《现代矿业》2016,(4):94-97,99
鄂东某选厂采用"先磁后浮"原则工艺流程处理铁硫共生铁矿石,生产主产品铁精矿和副产品铜精矿、硫精矿。由于浮选条件的限制,铜精矿品位较低,长期处在14%左右,铜、硫精矿回收率均不高,仅35.14%、39.83%。为改善铜、硫精矿质量,在考察生产现场的基础上,就浮选给矿浓度、药剂制度进行混合浮选、分离浮选试验。结果表明,在浮选给矿浓度30%,混合浮选乙黄药用量80 g/t,2#油用量60 g/t,分离浮选石灰改用B石灰,用量1 000 g/t,活性炭和Z-200用量分别为80,10 g/t基本不变的条件下,原选铁尾矿经1粗1精铜硫混浮、1粗2精铜硫分离处理,可获得铜品位16.55%、回收率69.97%的铜精矿和硫品位41.92%、回收率61.91%的硫精矿。铜、硫精矿质量得到显著改善,实现了该铁矿石铜、硫的有效回收,提高了资源综合利用效率,为挖掘铜、硫精矿潜能提供了技术依据。  相似文献   

9.
对某复杂含银硫化铜矿进行工艺矿物学分析,研究发现矿石中的有价元素主要有Cu、Ag、S,含量分别为0.81%、7.03g/t、4.28%,主要的金属矿物有磁黄铁矿、黄铜矿、方铅矿和黄铁矿,黄铜矿大部分与磁黄铁矿共伴生,方铅矿主要与黄铜矿共伴生,且部分被黄铜矿包裹,银矿物则共伴生于这些金属矿物之间。粒度大于0.075mm的含铜矿物超过88%,其中96.83%的铜以硫化矿形式存在。在此基础上,采用优先选铜—抑铅浮铜—尾矿选硫的工艺,最终获得两种精矿,铜精矿中Cu、Ag、S的品位分别为25.24%、140.06g/t、34.69%,回收率分别为92.95%、60.39%、24.48%,硫精矿中S的品位为45.18%、回收率为55.53%,实现了矿石中有价元素的综合回收。  相似文献   

10.
西藏某低品位硫化铜矿原矿含铜0.44%,铜氧化率为8.3%,伴生金品位0.12g/t。铜矿物主要是黄铜矿,少量的辉铜矿、铜蓝,微量氧化铜矿物;脉石矿物主要为石英、绢云母、绿泥石等。硫化铜矿物嵌布粒度微细,与脉石矿物共生关系紧密,解离困难,且易泥化脉石矿物含量多,是影响铜精矿品质的主要原因。针对该矿石特点,推荐采用“铜硫混浮-混合精矿再磨-铜硫分离”工艺替代原优先浮选工艺,结果表明,闭路试验可获得铜精矿铜品位19.82%,含金4.46g/t,铜回收率87.0%,金回收率73.8%的试验指标。与原工艺相比,铜及伴生金回收率均明显提高。  相似文献   

11.
龚哲彦 《现代矿业》2020,36(9):110-113
针对某地磁铁矿石含硫(339%)较高,磁选容易造成铁精矿含硫超标的问题,进行降硫选铁及综合回收伴生有价组分的选矿试验研究,最终推荐浮选—磁选联合工艺流程,获得了铜品位1330%、金品位425 g/t、银品位107 g/t,铜回收率5125%的合格铜精矿;硫品位2960%、硫回收率7974%的合格硫精矿;全铁品位6705%、硫含量016%、全铁回收率6200%的合格铁精矿;该工艺流程合理,浮选除硫可有效地降低铁精矿中的硫含量,并且综合回收了铜和硫,提高了该矿山的经济价值。  相似文献   

12.
以云南某铜金多金属矿为研究对象,探索了金在与其伴生的硫化矿、磁铁矿混合体系中的选矿特性及载体矿物对其选矿指标的影响。依据金在该矿石中的赋存状态、嵌布特征及其载体矿物的多样性等特点,采用了优先选铜再选硫,然后磁选铁矿物的工艺流程。通过精细化调控工艺参数,在最佳的综合条件下,获得的铜精矿铜品位为18.63%、含金63.24g/t,铜回收率为88.67%,金在铜精矿中的分布率为67.06%;硫精矿硫品位为47.86%、含金2.41g/t,硫回收率为86.16%,金在硫精矿中的分布率为15.08%;铁精矿铁品位为59.55%、含金1.20g/t,铁回收率为38.22%,金在铁精矿中的分布率为10.51%,为技术经济指标的提升和工艺改进提供了理论依据。  相似文献   

13.
赤城县石槽铜铁矿选矿试验研究   总被引:3,自引:1,他引:2  
针对石槽钢铁矿矿石进行了原矿直接磁选、原矿先浮选—浮选尾矿磁选流程试验研究。通过试验,最终确定采用先浮后磁选矿工艺.先浮选回收铜,然后对浮选尾矿进行磁选选别铁,铜、铁粗精矿分别再磨精选的工艺流程。小型闭路试验获得了铜品位21.05%、铜回收率76.04%、含金1.78g/t、金回收率41.83%、银278g/t、银回收率39.62%的铜精矿和铁品位63.17%、铁回收率75.58%的铁精矿.有价元素得到综合回收。  相似文献   

14.
西藏某斑岩型铜矿中含铜1.10%~1.30%、含金0.04~0.08g/t,矿石中铜矿物以辉铜矿为主、黄铜矿次之,铜矿物嵌布粒度细、且嵌布关系复杂,金主要与铜矿物和黄铁矿伴生,原有工艺铜精矿中的金难以富集到1g/t以上,且铜回收率偏低。为高效综合回收矿石中的铜金资源,开发了低碱条件下"铜硫部分混合浮选"新工艺,并以新型捕收剂ZH-01为铜硫混选的捕收剂,铜硫混选粗精矿经一次精选后,获得合格的铜精矿。实验室小型闭路试验结果表明,在磨矿细度-74μm含量占70%、原矿含铜1.21%、含金0.06g/t的条件下,获得了含铜35.27%、铜回收率94.12%,含金1.11g/t、金回收率56.23%的铜精矿。与现场工艺相比,新工艺不仅提高了铜的回收率,伴生金也得到了综合回收,实现了矿石中铜金的高效综合回收。  相似文献   

15.
秘鲁某选铁尾矿中铜品位为0.83%,铁品位24.04%,同时伴生一定的金、银,具有较高的综合回收价值。该尾矿包含的脱硫泡沫中的硫被活化,铜矿物中次生铜离子对硫的影响以及海水中各种离子对铜浮选的干扰等,使得选铁尾矿的回收具有一定的难度。针对上述问题,在矿石工艺矿物学研究的基础上,通过工艺流程探索,最终采用优先选铜-粗精矿再磨-尾矿再选铁-铁精矿反浮选脱硫的新工艺,闭路流程试验获得铜精矿铜品位26.15%,铜回收率83.33%,铜精矿中含金2.14g/t,金回收率为44.34%,含银107.50 g/t,银回收率为63.33%;铁精矿铁品位68.32%,铁产率5.4%的较好指标,实现了二次资源综合利用。  相似文献   

16.
原矿Cu品位2.52%,S含量达27.59%,硫化矿含量接近60%。铜硫分离十分困难;伴生Au、Ag含量极高,价值大,分别达7.8g/t、585.8g/t,应予以充分综合回收。工艺上摈弃传统优先浮选,采用混合浮选方案;在粗磨的基础上,对粗精矿进行再磨处理;药剂制度上采用新型抑制剂STY,并且加入少量硫化钠与活性炭进行脱药处理。在最佳条件下得到了铜、硫两种精矿产品,铜精矿Cu品位21.27%、回收率高达92.43%,同时铜精矿含银高达4115.8g/t、含金达34.9g/t;硫精矿S品位45%,含金7.5g/t、含银153.2g/t,铜、硫、金、银均得到了高效回收,尤其是铜硫分离效果很好。该研究为多铜硫金银多金属矿高效回收提供了一种可行的解决方案。  相似文献   

17.
西藏某氧化铜矿石选矿试验研究   总被引:7,自引:2,他引:7  
对西藏某氧化铜矿石进行了可选性试验研究。试验根据矿石的工艺矿物学特性,以传统的硫化浮选工艺为基础,采用“硫氧分步粗选-粗精矿混合精选”的工艺流程并辅之以新型高效浮选药剂,有效地选别和综合回收了矿石中的有价元素铜和伴生金、银。闭路试验指标为,铜精矿品位31.66%、回收率83.25%,铜精矿含金1.50g/t、银106g/t,金、银回收率分别为78.62%、64.35%。  相似文献   

18.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

19.
铜火法冶炼渣中铜品位为5.23%,具有良好的回收利用价值。原矿中铜矿物主要为冰铜和金属铜,脉石矿物主要为铁酸盐和铁橄榄石,还有大量的玻璃相。玻璃相的存在为选矿带来不利的影响。对该冶炼渣采用阶段磨矿—异步浮选工艺,在较粗的磨矿细度下优先回收可浮性较好的粗颗粒铜矿物,获得含铜45.36%、铜回收率81.65%的铜精矿,浮选尾矿再磨后回收细粒级的铜矿物,获得含铜13.65%、铜回收率13.74%的综合铜精矿,综合铜精矿含铜33.99%,含金3.42 g/t,含银79.17 g/t,铜回收率95.40%,金回收率85.94%,银回收率81.17%,该冶炼渣中的铜、金和银均得到较好的回收。   相似文献   

20.
罗增鑫 《现代矿业》2020,36(3):103-107
某大型低品位金铜矿山较高品位铜矿石选用浮选工艺进行富集,低品位铜矿石则利用生物堆浸工艺生产阴极铜,该矿山生物堆场随着堆高的增加,酸铁不断浸出、铜浸出率下降。针对该生物堆浸低品位铜矿石,采用预先分级、选冶联合工艺,并对原有堆浸工艺进行优化,2 mm筛上产品柱浸试验浸出率为75.22%,比原工艺流程浸出率提高了5.08个百分点,铁累积浸出率同比下降了2.75个百分点。-2 mm产品通过浮选工艺最终可获得含铜20.20%、回收率87.21%,伴生金品位3.6 g/t、金回收率58.74%,伴生银品位83.7 g/t、银回收率为68.28%的铜精矿,以及含硫47.12%,回收率33.00%的硫精矿。预先分级、选冶联合工艺铜综合回收率为79.55%,较原生物浸出工艺铜浸出率69.14%提高10.41个百分点,并伴生回收贵金属金、银及副产品硫精矿,使用该工艺可增加利润约1.16亿元。工艺改造后不仅可提高资源利用率,产生较大的经济效益,还可降低酸铁的浸出,大大降低环保处理成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号