首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
四川某铜多金属矿石中除铜外,还伴生有钼、硫钴和铁。为了合理有效地利用该矿石,对其进行了选矿工艺研究。结果表明,采用铜钼混合浮选-铜钼分离浮选-混浮尾矿浮硫钴-浮选尾矿弱磁选回收铁的工艺流程,可在高效回收铜的同时较好地实现钼、硫钴和铁的综合回收,所获铜精矿铜品位为21.25%、铜回收率为93.38%,钼精矿钼品位为45.78%、钼回收率为45.72%,硫钴精矿硫品位为44.69%、钴品位为0.46%、硫回收率为41.53%、钴回收率为46.42%,铁精矿铁品位为63.73%、铁回收率38.29%。  相似文献   

2.
介绍了国内外矽卡岩型铁矿石的综合利用现状,指出应根据矿石性质来取相应的综合回收方法和工艺流程,对铜、钴(硫)含量均具有综合回收价值的矽卡岩型铁矿石,应进行铜、钴(硫)分离,分出铜和钴(硫)的最终精矿。  相似文献   

3.
以四川某地铜矿为研究对象,依据其矿石性质,采用优先浮选工艺流程回收铜、伴生硫钴矿物,闭路试验可获得Cu品位24.57%、回收率97.06%的铜精矿,Co品位0.31%、回收率33.30%的硫钴精矿。达到了对铜、钴等矿物综合回收的目的。  相似文献   

4.
马亮  吴耀坤 《现代矿业》2018,34(9):135-137
针对某铜矿选矿厂目前选矿工艺流程存在的伴生有价金属金、钴未得到有效回收利用的问题,通过增加重选回收金、浮选回收硫钴流程对原“抑硫浮铜-铜尾矿磁选回收铁”进行优化改造。改造后,新工艺流程在铜、铁回收指标变化幅度较小的前提下,获得金品位486.00 g/t,金回收率38.88%的毛金砂,硫品位32.45%、钴品位0.43%,硫、钴回收率分别是19.20%、24.51%的硫钴精矿。生产应用后,新增合质金34.817 kg/a,硫钴精矿1 128.6 t/a,实现了矿石中伴生有价元素金、钴的有效回收,经济效益显著,可为其他类似选矿厂综合回收有价金属提供借鉴。  相似文献   

5.
刚果(金)加丹加矿区硫氧混合型铜钴矿石含Cu2.21%和Co0.16%,铜钴元素均达到了工业回收标准,为确定合理高效的选矿工艺,进行了矿石性质分析及选矿试验研究。结果表明:该硫氧混合型铜钴矿石中的目的矿物种类复杂,目的元素铜除硫化铜和氧化铜形态赋存外,还有部分铜以铜锰铝硅氧化结合物中的铜形态赋存。钴主要以含钴黄铁矿及水钴矿形式赋存,脉石矿物主要以易泥化的碳酸盐类脉石为主。结合矿石性质分析和探索条件试验的结果确定了硫化矿物浮选—氧化矿物硫化钠硫化、组合捕收剂协同捕收浮选氧化铜矿物—氧化矿尾矿高梯度强磁选的选矿工艺,该工艺根据不同类型的目的矿物可浮性和磁性的差异性,分段产出硫化铜精矿、氧化铜精矿和磁选精矿三个产品,三个产品总铜回收率达到了91.54%,总钴回收率达到了56.48%,实现了对该硫氧混合型铜钴矿石主要元素的综合回收。   相似文献   

6.
以非洲某高钙镁铜钴矿为研究对象,采用多种分析检测方法进行工艺矿物学研究,为该铜钴矿的开发利用提供参考数据。查明矿石中铜和钴的含量分别为5.40%和0.062%,为主要回收元素。矿石中钙镁含量较高,分别为镁含量8.55%、钙含量7.05%。矿石中铜、钴的硫化率分别为93.25%和75.81%,钴的硫化率相对较低。矿石中铜矿物主要为黄铜矿及斑铜矿,钴矿物主要为硫铜钴矿及辉砷钴矿,脉石矿物主要为白云石及石英。硫化铜矿物粒度分布不均匀,以中粒为主;硫铜钴矿及辉砷钴矿均以细粒为主。矿石中镁除了以白云石形式存在外,还有相当部分以镁质层状硅酸盐矿物形式存在,在浮选过程中易富集于浮选精矿,造成精矿中镁超标。根据矿石性质,在制定选矿工艺时需考虑硫化铜矿物、钴矿物的嵌布粒度差别,矿石中钴的较高氧化率对钴回收的影响,含镁矿物对浮选产品指标的影响,在保证精矿品质的情况下,同时实现铜和钴较高的回收率。  相似文献   

7.
刚果(金)某含易浮脉石铜钴矿选矿试验研究   总被引:1,自引:0,他引:1  
尹琨  谭欣  吴卫国 《矿冶》2014,23(4):1-4
针对刚果(金)某铜钴矿嵌布粒度较细、次生硫化铜含量高、含易浮脉石较多的矿石特点,采用"原矿细磨—预先浮选脱除易浮脉石—硫氧异步混合浮选"流程进行铜钴矿物的浮选回收。采用该技术,可从铜、钴含量分别为2.98%和0.030%的原矿,获得含铜28.54%、钴0.14%,铜、钴回收率分别为93.41%、44.47%的铜钴精矿,较好地实现了铜钴资源的综合回收。  相似文献   

8.
该多金属矿石矿物组成复杂,矿石中富含金、铜、钴、锡、铋、硫等有价元素。根据矿石性质,采用"优先选铜,砷、硫、铋混浮,砷、铋—硫分离,浮选尾矿摇床重选回收锡"的选矿工艺流程,较好地解决了该多金属矿的选矿难题,获得了较理想的经济技术指标。  相似文献   

9.
为了确定澳大利亚布朗斯地区炭质页岩铜钴镍矿资源合适的选矿工艺,对该地区有代表性矿样开展了工艺矿物学研究。结果表明:1矿石为典型的沉积型炭质页岩多金属矿,矿物组成复杂,主要金属矿物为黄铜矿、斑铜矿、硫钴镍矿等,矿石中钴、镍等有价元素以类质同象的形式或呈机械夹杂物分布于硫镍钴矿、黄铁矿及脉石矿物中,脉石矿物主要为炭质、白云母、多水高岭石等。2矿石中各矿物间共生关系复杂,普遍存在着交代结构和相互浸染构造,致使部分可浮性较好的炭质矿物易浮选进入硫化矿精矿中,同时部分微细粒硫钴镍矿被黄铜矿包裹,浮选时易进入铜精矿中。3矿石中黄铜矿和黄铁矿属中细粒嵌布范畴,硫镍钴矿属细粒—微粒嵌布范畴。根据矿石工艺矿物学特征,建议采用阶段磨矿—阶段选别的工艺依次回收铜、钴、镍、硫,尾矿可作为钾化肥。  相似文献   

10.
某铜钴矿铜品位0.85%,钴品位0.10%。铜主要以独立的铜矿物形式存在,绝大部分赋存在黄铜矿中;钴主要赋存于毒砂中。根据矿石性质,通过铜快速浮选-铜钴混合浮选再分离的工艺流程,先获得部分易浮铜精矿,再通过铜钴分离作业获得其余的铜精矿及富钴硫精矿。闭路流程可获得铜品位23.29%、铜回收率84.82%的铜精矿,以及钴品位2.63%、钴回收率63.07%的富钴硫精矿。  相似文献   

11.
柿竹园钨钼铋萤石多金属矿伴生有少量的磁铁矿,其全铁品位为7.15%,磁铁矿中铁品位为1.68%,占全铁的23.50%。该钨钼铋萤石多金属矿整个选矿工艺流程采用“柿竹园法”,其中,在回收钨、钼、铋、萤石等有用矿物前,采用中磁磁选将磁铁矿优先脱出,以避免磁铁矿对后续选别作业造成干扰,产出磁铁矿粗精矿。由于近年来铁矿石价格上涨态势明显,为进一步提高矿产资源的综合利用率和挖掘企业新经济增长点,决定对该磁铁矿粗精矿进行提质选矿实验研究。通过对该磁铁矿粗精矿矿石性质进行研究,发现该磁铁矿粗精矿存在嵌布粒度细、含磁硫高的特点。为提高磁铁矿精矿品质,必须提高磁铁矿精矿中铁的品位,同时还要降低磁铁矿精矿中硫的含量。提高磁铁矿精矿铁品位采用细磨的方法,使磁铁矿充分单体解离,然后通过弱磁选可将铁精矿品位提高;而要降低磁铁矿精矿中硫含量的方法,一般来说采用反浮选脱硫,需要通过实验找到跟该矿石性质相适应的反浮选脱硫工艺流程与参数,确保磁铁矿中磁硫的高效脱除。在经过系统的选矿实验研究后,确定了采用先脱磁再反浮选脱硫,再通过阶段磨矿阶段选别的选矿工艺流程,可以大幅度提高最终磁铁矿精矿品质。在磁铁矿粗精矿品位TFe 38.19%、含S 4.51%时,可以获得最终磁铁矿精矿品位TFe 60.85%、含S 0.99%,铁作业回收率72.13%的良好实验指标。该工艺在现场得到应用,通过优化现场流程结构配置,取得良好效果,为企业新增经济效益显著。   相似文献   

12.
安徽某低铜高硫磁铁矿石属嵌布关系复杂的多金属矿石。为了开发利用该矿石,采用优先选铜—活化浮硫—弱磁选选铁—铁精矿反浮选脱硫原则流程进行了选矿试验。结果表明,铁品位为46.62%、铜品位为0.32%、硫品位为20.56%的矿石采用1粗2精1扫浮铜、1粗1精2扫浮硫、1次弱磁选铁、弱磁选铁精矿1粗1精反浮选脱硫流程处理,最终获得了铜品位为17.09%、回收率为78.64%的铜精矿,铁品位为67.35%、回收率为41.16%、含硫0.28%的铁精矿,以及硫品位为43.69%、回收率为88.79%的硫精矿。该试验结论可作为选矿厂设计的依据。  相似文献   

13.
河北某伴生硫钴磁铁矿铁品位40.72%,有用矿物主要为磁铁矿、钴黄铁矿,属共伴生铁矿石。为给该矿石的开发利用提供技术支撑,进行了以下4种方案的选矿工艺研究,方案Ⅰ(原矿球磨磨矿—弱磁选)、方案Ⅱ(原矿常规破碎—预选抛尾—球磨磨矿—弱磁选)、方案Ⅲ(原矿高压辊磨—预选抛尾—球磨磨矿—弱磁选)和方案Ⅳ(原矿预选抛尾—自磨磨矿—球磨磨矿—弱磁选)。研究结果表明,以上4种方案均能够获得Fe品位66%以上、铁回收率87%以上的合格铁精矿。对方案Ⅳ磨选尾矿进行浮选回收硫、钴试验结果表明,可获得硫品位42.74%、钴品位0.31%的钴硫精矿。  相似文献   

14.
云南某低品位难选铁锡矿中铁、锡品位分别为30.91%和0.23%,主要回收矿物为磁铁矿和锡石。为充分回收矿石中的有价组分,依据原矿性质,确定采用磁选选铁—浮选选硫—脱泥—锡石选别(重选+浮选)的工艺流程进行选矿试验研究。原矿经过1粗1精两段磁选可以获得铁品位60.69%、铁回收率78.63%的弱磁精矿。弱磁尾矿经过1粗1精2扫选硫后,选硫尾矿中硫品位降至0.46%,硫精矿锡作业回收率仅为6.88%。将浮硫尾矿筛分为+0.043 mm和-0.043 mm粒级样,+0.043 mm粒级样通过摇床能获得锡品位6.48%、锡作业回收率52.54%的摇床精矿产品; -0.043 mm粒级样经水析脱除-0.01 mm细泥后,以水杨羟肟酸+GZ为锡石捕收剂,2号油为起泡剂,闭路浮选最终可获得锡品位5.69%、锡作业回收率70.23%的锡精矿产品,尾矿中锡品位降至0.12%。全流程试验最终获得铁品位60.69%、铁回收率78.63%的磁铁精矿,锡品位5.92%、锡回收率31.93%的锡精矿,总尾矿中锡品位降至0.14%,实现了该铁锡矿资源的综合回收。  相似文献   

15.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

16.
青海省某高硫磁铁矿选矿试验研究   总被引:1,自引:1,他引:0  
青海省某磁铁矿,含主要有色金属元素Zn、Cu,其嵌布粒度细,在磨矿细度-0.074 mm达90.07%时,采用浮选-磁选的工艺回收该磁铁矿,可获得TFe 68.76%铁精矿、铁回收率80.22%、含硫1.08%。同时获得含硫26.09%的硫精矿,硫回收率65.51%,并且富集了Cu、Zn等金属元素。该铁精矿再经过氧化焙烧,可使含硫量降至0.2%以下,达到优质铁精矿的质量标准。  相似文献   

17.
澳大利亚Caim Hill磁铁矿选矿试验研究   总被引:2,自引:0,他引:2  
针对澳大利亚Cairn Hill含铜、金的磁铁矿矿石,进行了先磁后浮及先浮后磁两大原则流程方案的选矿试验,并在先浮后磁的浮选方案中又进行了铜优先浮选流程和铜硫混合浮选两种流程方案试验。最终确定优先浮选铜、后浮选硫、尾矿弱磁选铁的先浮后磁联合工艺。小型闭路试验获得了铜品位21.15%、铜回收率88.94%、含金4.10g/t、金回收率49.50%的铜精矿和铁品位70.68%、铁回收率92.14%的铁精矿,以及硫品位40.58%、硫回收率57.80%的硫精矿。  相似文献   

18.
马崇振 《矿冶工程》2022,42(3):76-79
国外某高硫铁矿中铁主要赋存于磁铁矿中, 硫主要赋存于磁黄铁矿和黄铁矿中。为合理开发利用该矿石, 采用阶段磨矿-阶段磁选获得高硫铁粗精矿, 进而采用反浮选脱硫工艺进一步提纯铁精矿。结果表明, 采用磁选-反浮选联合工艺, 实验室闭路试验获得了铁精矿铁品位67.09%、铁回收率69.80%、硫含量0.047%、硫脱除率97.35%的选别指标。  相似文献   

19.
介绍了新疆某磁铁矿的矿石性质和浮选脱硫的试验研究结果。试验结果表明,以丁基黄药为捕收剂,CuSO4+Na2S为组合活化剂,经先浮选后磁选工艺流程,可将铁精矿品位提高到65%以上,硫含量降至0.30%以下。试验实现了对铜、硫的综合回收。  相似文献   

20.
某铁矿石中铁以磁铁矿为主,含部分黄铁矿、磁黄铁矿等铁矿物。磁黄铁矿和黄铁矿的存在,致使在采用直接磁选时,铁精矿含硫较高。针对矿石中的磁铁矿物和含硫矿物的特性特点,进行了详细的多方案试验研究。研究结果表明,原矿粗磨磁选抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程以及磁滑轮抛尾-磁粗精矿再磨浮选脱硫-浮硫尾矿磁精选联合流程均适合处理该铁矿,矿山可通过经济计算确定最佳的提质降杂方案。该技术为同类型磁铁矿山脱硫也提供了技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号