首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
杨宏民  冯朝阳  陈立伟 《煤炭学报》2016,41(9):2246-2250
为了研究注N_2促排煤层瓦斯过程中驱替和置换效应及其主导作用,利用自研的煤层注气实验装置,进行了单轴应力、分层预压成型条件下煤层注N_2促排瓦斯的模拟实验。实验结果表明:驱替和置换效应始终贯穿整个注气过程,共同作用将煤体中瓦斯排出。在注气初期14 min内,置换解吸效应起主导作用,注入的N_2由于被吸附或充填于煤层孔裂隙等自由空间而被全部滞留煤中,表现为出口并无N_2排出,而煤体中的CH_4则大量解吸排出。在14~200 min注气实验时间内,置换作用的主导地位将逐渐丧失,开始进入置换作用减弱和驱替作用增强的转换阶段;在注气时间大于400 min的后期,处于置换和驱替相互作用、彼此平衡的时期,但置驱总效率处于较低水平。根据注气400 min(6.67 h)后注气促排效率较低的实验结果,建议井下煤层注气时间控制在8 h工作制的一个小班以内为宜。  相似文献   

2.
CH4/CO2不同浓度混合气体的吸附-解吸实验   总被引:4,自引:1,他引:3       下载免费PDF全文
选择山东菜园矿的气煤和山西古交矿的焦煤的平衡水煤样对不同浓度的CH4和CO2混合气体进行了吸附-解吸实验,分析了CH4和CO2在吸附-解吸过程中各组分浓度的变化规律,并探讨分析了实验过程中出现高压阶段吸附量小于低压时的原因.结果表明,不同浓度的CH4和CO2混合气体的解吸曲线都滞后于吸附曲线;相同条件下,焦煤的吸附量大于气煤的吸附量;CO2与CH4浓度之比越大,气体的吸附量越大;吸附过程中,CO2组分的吸附速率是先快后慢,而CH4组分的吸附速率先慢后快,解吸时则相反.吸附和解吸平衡时,游离相中的CO2浓度低于原始混合气体中的CO2浓度,CH4浓度高于原始气体中CH4浓度.实验结果证实了CO2在与CH4的竞争吸附中占据优势,注入CO2可以有效地置换或驱替煤层CH4,注入CO2气体的数量越大、相对浓度越高,单位压差CH4解吸率和CO2吸附率就越高.  相似文献   

3.
为了解决注气置换煤层瓦斯技术气源选择的问题,分析了注CO2和N2在置换煤层瓦斯机理方面的效果以及煤吸附2种气体后对煤体渗透率、突出危险性的影响。分析发现,虽然注入CO2置换煤层瓦斯的效果优于N2,但煤吸附CO2后会造成煤层膨胀变形、渗透率降低、突出危险性增大的现象,且CO2在瓦斯利用系统中会导致瓦斯失  相似文献   

4.
阜新煤田注二氧化碳提高煤层甲烷的研究   总被引:3,自引:1,他引:2  
针对阜新煤田煤储层的地质特征,选取了刘家煤层气勘探区和东梁矿2个地点,开展了注二氧化碳置换煤层甲烷的试验模拟研究.试验结果表明,二氧化碳的吸附能高于甲烷的吸附能,它可以将甲烷从煤的微表面置换出来,从而提高煤层甲烷的采出率.在置换过程中总是吸附能力弱的甲烷首先解吸,而吸附能力强的二氧化碳最后解吸,而且较高压力下的置换效果总比低压下的好.与东梁矿煤样相比,刘家煤样具有较强的吸附能力和较高的单位压降下的解吸率,但置换效率相差不大,主要原因是二者的二氧化碳对甲烷分离因子差别较小.注气试验时应该充分考虑注入压力点和气体注入量才能保证满意的置换效果.  相似文献   

5.
同一煤层软煤和硬煤物性参数特征不同,导致其对气体吸附行为存在差异。基于实验室测试模拟的方法,测试软硬煤体物性参数的差异性,搭建二元气体竞争吸附实验平台,研究软、硬煤体CO2和CH4竞争吸附特性规律。结果表明:除坚固性系数f值外,软硬煤基本参数相近,软煤微孔体积及孔表面积大于硬煤;单组分等温吸附,软煤吸附量大于硬煤,对CO2吸附量大于CH4,过程呈先增加后平缓趋势;煤对单一组分的CO2的吸附量最大,对CH4的吸附量最小,煤对CO2+CH42种混合气体总吸附量介于两者之间;随着吸附平衡压力增加,煤对混合气体的吸附曲线会逐渐远离煤对单一组分的CH4的吸附曲线,而不断接近CO2的吸附曲线。  相似文献   

6.
张美红  吴世跃  李川田 《煤炭学报》2013,38(7):1196-1200
论述了注CO2开采煤层气质交换机理和煤系地层封存CO2意义,建立了注CO2开采煤层气的物理数学模型。采用饱和食盐水集气方法测定了表征解吸阻力大小的综合参数--综合传质系数α随浓度、煤变质程度、放散时间的变化规律。试验结果表明:α随煤粒吸附基质浓度的增大而增大;变质程度相同时,CH4的α随时间的衰减较CO2的α随时间的衰减慢;基质浓度相同时,煤变质程度越高,α越小,且对不同变质程度的煤岩,CH4的α大于CO2的α,即不同变质程度的煤岩对CO2的吸附能力都大于CH4。说明注气增加储层压力促进气体解吸置换,各种煤岩对CH4的解吸量大于对CO2的解吸量这一现象与煤的变质程度无关。因此,在不同变质程度煤层,甚至煤系地层中,注气开采煤层气与储存CO2技术在理论上都是可行的。  相似文献   

7.
注水对煤层吸附瓦斯解吸影响的试验研究   总被引:1,自引:0,他引:1  
水力化措施在煤矿开采中广泛应用,为了研究注水对煤层瓦斯解吸的影响,采用高压吸附-注水-解吸测试装置对不同吸附平衡压力和水分条件下煤对瓦斯的置换解吸量、卸压解吸量及总瓦斯解吸量进行了测试计算。结果表明:注水过程中及注水一段时间内煤样罐瓦斯压力呈现出继续增高的趋势,说明注入的水置换出了煤体吸附的瓦斯,且水分越高,置换解吸量越大,测试的最大置换量可达11.88 mL/g;卸压后,注水煤样的瓦斯解吸量减小,且水分越大,瓦斯解吸量降幅越大,降幅最大值可达68.29%;注水后煤的总解吸量增大,说明注水对试验煤样的瓦斯解吸起促进作用。  相似文献   

8.
煤对气体吸附特征的研究现状及应用前景展望   总被引:2,自引:0,他引:2  
杨宏民  任子阳  王兆丰 《煤》2009,18(8):1-4
在查阅大量技术文献的基础上,就煤对气体的吸附—解吸方式、特性、模型、影响因素及国内外研究现状等方面进行了综述,分析了当前我国煤的瓦斯吸附—解吸理论研究和技术应用中存在的问题和不足,并从瓦斯安全控制的角度,提出了煤层注气置换、驱替解吸的研究发展趋势和需要解决的技术问题。  相似文献   

9.
热力作用下煤层注CO_2驱替CH_4试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究体积应力和温度对于煤层注CO2条件下CH4驱替量的影响规律,利用自制三轴吸附解吸试验装置,对煤试件开展考虑煤层体积应力和温度热力作用影响的与煤层等孔隙压注CO2驱替CH4试验研究。试验结果表明:相同温度条件下,气体吸附量随体积应力增加逐渐减小,下降梯度明显;体积应力是煤层CH4驱替量的主要影响因素,拟合得出20~50℃区间内煤层CH4驱替量随体积应力变化的计算公式。在相同温度条件下,随着体积应力增加,CH4驱替效率逐渐减小,近似于线性变化规律;随着温度升高,CH4驱替效率上升显著且梯度明显。在相同温度条件下,随着体积应力增加,置换体积比相应增加;随着温度升高,置换体积比减小,近似呈等梯度下降规律。  相似文献   

10.
煤层处置二氧化碳模拟实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究CO2在煤层中的储存能力与置换驱替CH4特性,利用沁水煤田潞安矿区3号煤层大尺寸(100 mm×100 mm×200 mm)煤样,在确定应力约束条件下,开展了CO2在煤体中的吸附特性与其在含甲烷煤试样中的驱替实验,并对含甲烷煤和不含甲烷煤中CO2的储存特性做了对比分析。结果表明:在模拟真实地应力(围压=轴压=8 MPa)条件与0.5 MPa注入压力作用下,180min内试验煤样中储存CO2量达11.03 L,CO2在测试煤体中的渗透率随其吸附量的增加而减小;在既定的地应力条件和近于14.93 cm3/g煤层平均瓦斯含量条件下,当CO2注入压力由0.5 MPa提高到1.0 MPa时,CO2在试验煤体中的储存量可提高93.00%、储存率提高13.50%、相应CH4的解吸量提高了18.13%;在实验初期,CH4的解吸量高于CO2的吸附量,随注入过程的持续,煤体中CH4的解吸量逐渐趋于平缓且远小于CO2的吸附量;同等条件下,含CH4煤比不含CH4煤可多储存59.29%的CO2,储存率提高了12.51%。  相似文献   

11.
大佛寺井田4号煤CH_4与CO_2吸附解吸实验比较   总被引:1,自引:0,他引:1       下载免费PDF全文
以迅速降低大佛寺4号煤含气量,提高地面煤层气井采收率为目标,进行CO2驱替CH4技术的实验研究。对采自大佛寺矿井40114工作面的样品,进行多个温度点柱体原煤与60~80目平衡水样的CH4与CO2吸附解吸对比实验。结果表明:CO2在煤孔隙表面与CH4一致,吸附过程符合Langmuir方程,解吸过程可用解吸式描述;由热力学计算可知,柱体原煤升压过程CO2吸附热为56.827 kJ/mol,CH4吸附热为12.662 kJ/mol,降压过程CO2吸附热为115.030 kJ/mol,CH4吸附热为23.602 kJ/mol,无论升压过程还是降压过程CO2吸附热远大于CH4吸附热,两种气体在煤孔隙表面竞争吸附时CO2占据优势,导致置换解吸;吸附势、吸附空间计算验证了这个结论;利用CO2驱替CH4技术,提高煤层气采收率,理论依据充分可行。  相似文献   

12.
侯东升  梁卫国  张倍宁  李畅 《煤炭学报》2019,44(11):3463-3471
CO2驱替开采煤层气过程中,由于CO2和CH4的竞争吸附,CO2/CH4混合气体在运移时CH4体积分数会不断发生改变,进而影响煤体变形和渗透特性。利用自主研发的三轴渗流系统,采用稳态渗流法对焦煤样进行单一组分气体(He,CH4和CO2)和不同配比的CH4/CO2混合气渗流试验。渗流过程中保持温度和体积应力(30 ℃、33 MPa)恒定,并利用LVDT测量煤体的轴向变形。结果表明:① He和不同配比CH4/CO2混合气的渗流过程均受滑脱效应的影响,气体渗透率随入口压力增大呈先减小后缓慢增大的变化;对于非吸附He,入口压力Symbol|@@2 MPa时滑脱效应对气测渗透率的影响要远远大于有效应力效应;② 在一定的体积应力条件下,不同配比CH4/CO2混合气体吸附引起的煤体膨胀应变随入口压力增加而增大,变化规律符合Langmiur方程,且在相同入口压力条件下,混合气体中CO2浓度越高,煤体膨胀应变越大;③ 在考虑有效应力效应、吸附膨胀应变对渗透率的动态影响以及滑脱因子b随煤体渗透率变化的基础上,建立了煤体气测渗透率理论模型,该模型能够描述不同配比CH4/CO2混合气体以及He渗透率随入口压力的变化;④ 随着煤储层CH4/CO2混合气体压力增大或者CO2体积分数升高,基质膨胀应变对煤体渗透率的影响逐渐减小。煤体中靠近孔裂隙的基质吸附膨胀对渗透率的影响(β)随入口压力的增加逐渐减小;CH4/CO2混合气体中CO2体积分数越高,β减小速率越大。  相似文献   

13.
注CO_2提高煤层气采收率技术研究现状   总被引:1,自引:0,他引:1  
中国埋深2 000 m以浅的煤层气资源潜力巨大。研究表明,向煤层中注入CO2提高煤层气采收率技术具有巨大潜力,能够实现中国2 000 m以浅煤层气产量增产3.751×1012m3。本文从多元气体的竞争吸附、煤吸附CO2之后的体积膨胀及其对渗透率和力学性质的影响以及世界各地的现场试验3个方面介绍这一技术在世界范围内的发展历程和研究进展。列举了几个国家利用这一技术的现场试验情况,试验结果较为相似。最后指出了在室内研究和现场测试中需要考虑的一些问题,诸如多元气体竞争吸附与煤分子结构的关系研究、吸附膨胀量和气体注入量、注入压力和煤阶之间的关系研究、注CO2引起的吸附膨胀对后期煤矿采煤作业的影响和安全威胁。  相似文献   

14.
刘磊 《煤炭工程》2020,52(4):124-129
在我国煤层气的开发中普遍面临煤层具有的低压、低渗、低饱和度等自然属性问题,针对此问题,提出利用液态气体伴注辅助水力压裂改造煤层技术。文章阐述了液氮伴注技术提高煤层临界解吸压力机理和CO2驱替煤层甲烷机理,结合芦岭煤矿地面煤层气工业试验,进行了液氮伴注辅助水利压裂、液态CO2驱替煤层甲烷试验以及效果分析。结果表明:注入液氮后氮气分子会挤占煤层甲烷分子的空间,为甲烷气体提供外部能量,同时能够降低煤层甲烷分子分压,提高其临界解吸压力,促使煤层更快的解吸出甲烷气体,提高产气量,试验2号井,达到产气峰值3145.2m^3/d仅用190d,稳产期平均产气量为1400m^3/d;CO2具有的强吸附性能够与吸附态煤层甲烷发生置换作用,促使煤层甲烷更快的由吸附态变为游离态,实现煤层甲烷大量解吸的效果,同时CO2在等压条件下还能够降低游离甲烷分压,进一步提高产气量,试验3号井,实际/理论临界解吸压力比值为3.29,达到产气峰值3351.9m^3/d仅用了124d,稳产期平均产气量为800m^3/d。对比可知:液氮伴注技术优势明显,且在后续煤矿工作面回采过程中无新的CO2突出风险。  相似文献   

15.
In order to enhance coalbed methane recovery, taking a self-developed largecale simulation system for the platform, a modeling experiment of driving CH4 by CO2 gas injection was studied. The results of experiment indicates that there is a significant lag effect of adsorption and desorption on gas, the gas pressure is changed more rapidly in the process of carbon dioxide adsorption of coal than methane adsorption of coal; After the injection of carbon dioxide, compare with methane single desorption. In an early stage, speed and amount of methane single desorption are greater than the speed and amount of displacement desorption, the speed and amount of displacement desorption became greater. In the process of replacement, CH4 concentration constantly declined, while CO2 concentration constantly rose. In the process of CO2 gas injection, the temperature of coal have been significantly increased, it is more beneficial to make CH4 gas molecules become free from the adsorbed state when temperature is increased. Under the pressure step-down at the same rate, using the method of CO2 driving CH4, compared with the method of conventional pressure step-down, the desorption rate of CH4 in coal can be raised about 2.13 times, at the same time, a lot of greenhouse gas CO2 will also be buried in the ground, there is a very significant environmental benefit.  相似文献   

16.
煤吸附13CH412CH4的特性曲线及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
根据实测的4个不同煤阶煤的等温吸附实验数据,采用Dubinin建立的计算吸附空间的经验公式,分别计算了13CH412CH4在4个煤样的吸附势及其吸附空间,建立了煤吸附甲烷特性曲线的定量表达式.结果发现,13CH4在煤表面的吸附势普遍高于12CH4,也就是说13CH412CH4相比具有优先吸附、滞后解吸的特点.这种差异具有随压力增加而增加的特点.这一发现合理地解释了煤层气解吸实验中发现的先解吸甲烷δ13C偏轻、后解吸偏重的现象,同时也解释了浅部煤层甲烷碳同位素轻、深部重的地质现象.  相似文献   

17.
注气提高煤层气采收率研究进展   总被引:4,自引:0,他引:4  
煤层气将成为我国继煤炭和石油天然气之后的战略性接替能源,它的开发和利用既能解决我国天然气的不足,又能从根本上消除了煤炭开采中造成的瓦斯突出等灾害,还可以减少了大量瓦斯排放到大气中造成的环境污染以及改善我国的能源结构。论文详细阐述了煤层气赋存状态、煤层气吸附与解吸机理、煤层气开采基础与提高采收率方法,分析了注气增产法开发煤层气机理,指出了注气增产法开发煤层气的研究方向。  相似文献   

18.
梁卫国  张倍宁  黎力  贺伟 《煤炭学报》2018,43(10):2839-2847
在简述煤层气开采技术发展历程基础上,针对煤层气抽放开采率低的问题,提出了注能改性驱替开采煤层气技术,并从有效应力与热力学原理,能量平衡理论等方面进行了可行性分析。通过自主研发系列实验设备,对大尺寸、低渗透煤样进行了不同应力与温度条件下的渗透与驱替置换实验,揭示了注CO_2驱替开采煤层气的机理、规律与特征。研究结果表明:CO_2在煤体表面的吸附势大于CH_4,CO_2吸附引起的煤体表面自由能变化和吸附热均强于CH_4,注能(CO_2)有助于煤层气采收率提高;在一定的约束应力条件下,注入压力升高,CO_2吸附引起的煤体表面自由能变化和吸附热升高,同时作用在煤体上的有效应力降低,煤体的渗透性增强,CO_2驱替置换效果提高,反之,注入压力不变约束应力增大,有效应力增加,煤体渗透率降低,驱替置换效果变差;煤体对超临界态CO_2有很强的吸附性,在较大的有效应力和较低渗透率条件下,依然能保持较高的CO_2/CH_4置换率;提高注入CO_2温度,有助于部分吸附CH_4解吸,但同时煤体对CO_2吸附能力也减弱,导致CO_2/CH_4置换率有所降低。  相似文献   

19.
以CH4解吸过程CH4的质点运移过程、能量来源与传递为研究目标,剥离大佛寺4号煤的镜煤与暗煤,进行工业分析、煤岩分析、液氮吸附、压汞实验、润湿性测定、吸附/解吸等对比实验,进行吸附热计算。研究认为:按照传质功能分类,煤的孔隙分半开放孔与连通孔,镜煤吸附量大,以半开放孔为主,暗煤以连通孔为主;降压湍动引起水的蒸汽化,H2O的吸附放热导致CH4的解吸,降压解吸的本质是竞争吸附,表现为置换解吸;煤层气的产出的传质过程是低溶解度的CH4气核空化过程(Cavitition)。煤的吸水、平衡水实验与CT扫描结果初步验证了我们对煤层气产出的传质过程认识。研究结果补充了解吸作用的能量来源问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号