首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
煤矸石活化工艺试验   总被引:1,自引:0,他引:1  
采用加热活化与机械活化试验方法对三河地区煤矸石进行了活化研究.活性大小以掺入煤矸石的水泥强度进行评价,结果表明:原状煤矸石不宜用做水泥掺合料,其直接掺入水泥后,不仅影响水泥强度,也影响水泥的外观质量;通过煅烧,可以提高煤矸石活性;煤矸石细度增大,亦能提高煤矸石的活性,但程度不明显,建议该地区煤矸石煅烧温度为750℃,磨细细度为455 m2/kg左右.  相似文献   

2.
煤矸石增钙活化处理研究   总被引:2,自引:0,他引:2  
采用X射线衍射分析方法系统研究了高温活性区不同氧化钙掺量时煤矸石增钙活化处理过程的影响,结果表明:当煅烧温度在1100~1150℃时,且CaO掺入量较低的情况下(生石灰的掺量≤25%),能生成相对较多的硅酸盐活性矿物:当煅烧温度高至1200℃以上时,不适宜煤矸石进行增钙煅烧处理,其中,当CaO的掺入量较高时(生石灰的掺量≥30%),即能生成较多的C2AS矿物,该种矿物对煤矸石活性的表现极为不利.扫描电镜分析结果表明,增钙活化后煤矸石的微观结构呈疏松状态.力学强度试验结果表明,经过增钙活化处理的煤矸石胶凝性能明显提高.  相似文献   

3.
化学增钙与热复合活化煤矸石的性能研究   总被引:1,自引:0,他引:1  
对江苏宜兴煤矸石的基本物性分析知,其主要矿物成分为高岭石和石英,化学成分中Cao的含量相对较低.于煤矸石高温煅烧过程中引入不同掺量的CaO后制成活化煤矸石样,采用X射线衍射分析法(XRD)对其活化过程的结构特征进行分析,同时采用比强度法对部分活化煤矸石的火山灰效应进行评定.结果表明:煅烧温度较低时,生成的硅酸盐矿物较少...  相似文献   

4.
将煤矸石颗粒分别置于500℃、600℃、650℃、700℃、750℃、800℃、900℃、1000℃的温度中煅烧活化,然后按一定级配制作砂浆试件,测定其抗压、抗折强度,评定最佳的集料活化温度;根据基准砂浆流动度,研究不同活化煤矸石集料比例下减水剂的掺入量;测试不同养护龄期、不同活化煤矸石集料比例的水泥砂浆试块的立方体抗压强度与抗氯离子渗透性能,并分析了水灰比与砂浆强度的关系。研究表明,煤矸石集料的最佳活化煅烧温度为750℃左右;水泥砂浆流动度相同时,活化煤矸石集料比例的增大会增加减水剂的加入量;水泥砂浆试件的抗氯离子渗透性能随表面活化煤矸石集料的增加先增强后减弱,活化煤矸石集料比例为35%、水灰比为0.86~1.01时水泥砂浆的后期抗压强度与抗氯离子渗透性能均达到最佳状态。  相似文献   

5.
对煤矸石灌浆材料的水化机理进行了分析,发现浆材的水化物主要为CSH凝胶、CH晶体、水化铝酸钙以及水化硫铝酸钙(AFt)等,同时还有未水化的活性矿物晶相,可以保证结石体强度有继续增大的趋势。结果表明,煤矸石采用低温煅烧、机械活化、化学活化、晶种活化等活性激发措施后,再加入ZGW复合激发剂,适合作为灌浆材料。  相似文献   

6.
通过研究未燃煤矸石的煅烧温度、恒温时间以及细度对煤矸石-水泥胶砂强度的影响,制备煅烧煤矸石矿物掺合料,并检验胶砂流动度。在此基础上,研究热活化煤矸石掺合料(包括煅烧和自燃煤矸石两种)与其他掺合料复掺的品种、比例以及减水剂掺量对高强混凝土工作性和强度的影响。结果表明:热活化煤矸石粉与硅灰复掺,在高效减水剂共同作用下,配制预拌高强混凝土可行。热活化煤矸石与硅灰复掺,混凝土7 d、28 d抗压强度都明显高于粉煤灰和硅灰复掺。其中掺合料复掺品种及掺量对高强混凝土7 d抗压强度影响非常显著,随着热活化煤矸石粉掺量的递增,混凝土强度明显递增。复掺品种对混凝土28 d劈拉强度影响显著。热活化煤矸石与硅灰复掺对新拌混凝土坍落度的改善不及粉煤灰与硅灰复掺,但能满足预拌混凝土大流动性的施工要求。  相似文献   

7.
煤矸石低温煅烧法制备白炭黑   总被引:6,自引:0,他引:6  
以煤矸石为硅源用低温煅烧法制备白炭黑.实验结果表明,煤矸石和碳酸钠溶液均匀混合(n(Na2CO3)/n(SiO2)=1),并在800 ℃低温保温2 h,所得烧结物投入水中水淬,过滤得水玻璃;向水玻璃中加入乙醇并通入CO2气体,形成大量硅胶,硅胶经烘干制得白炭黑,当溶液乙醇浓度为4 mol/L时,样品的产率达86.15%.XRD衍射图谱及SEM分析得知:从硅胶可获得粒径达到纳米级、纯度达99.9%白炭黑.  相似文献   

8.
任根宽 《非金属矿》2012,35(2):50-52
铝、硅主要以高岭土形式存在于煤矸石中,活性非常低,在高温下煤矸石微观结构中各微粒产生剧烈的热运动,形成处于热力学不稳定状态玻璃相结构,可使烧成后的煤矸石中含有大量活性氧化铝,达到活化目的.本实验以萤石为助剂、煤粉为还原剂,采用石灰石烧结法活化煤矸石.实验表明,最佳活化条件为:石灰饱和系数KH0.8、萤石用量1%、煤粉的加入量1.5%、煅烧温度1260℃、烧成时间90 min.此条件下煤矸石中氧化铝的溶出率高达89.5%.  相似文献   

9.
由于煤矸石活性差、单独与水反应慢,仅有较弱的胶凝作用,因此采用了多种活性激发复合措施充分激活煤矸石潜在的火山灰反应活性,并探讨了经活化处理过的煤矸石粉在注浆材料中的应用。研究表明,煤矸石经活化处理后,活性有显著的提高,以其作为主要原材料所研制的注浆材料早期强度高,性能优越,符合现行注浆材料检验标准,从而实现了工业废渣大掺量的“资源化”利用,具有良好的社会效益和环境效益。  相似文献   

10.
通过煅烧活化煤矸石,考察煅烧温度对煤矸石活性的影响,分析煅烧温度影响煤矸石活性的内在机理。结果表明:煅烧能够活化煤矸石,煅烧到750℃并保温2 h的煤矸石活性最好,其水泥胶砂28 d抗压强度比为76.6%。煅烧温度升高,煤矸石颗粒尺寸减小,1 050℃煅烧煤矸石颗粒尺寸最小,其分级颗粒分布峰值位于30μm附近。煤矸石脱除羟基转变为偏高岭石的相变温度为529.1℃,偏高岭石重新结晶转变为莫来石的相变温度为1 015.2℃,热失重为15.55%。750℃煅烧煤矸石的红外光谱振动最强。煅烧改变煤矸石的~(27)Al-O、~(29)Si-O配位数,750℃煅烧煤矸石活性最好。  相似文献   

11.
大掺量煤矸石在干混砂浆中的应用研究   总被引:1,自引:0,他引:1  
利用废弃的煤矸石研制节能、实用的建筑材料,是工业废渣资源化的一项重要途径。针对煅烧煤矸石具有火山灰活性的特性,研制了一种加工方便、和易性好、粘结强度高、抗折和抗压强度较好的大掺量煤矸石干混砂浆,并考察了不同煅烧温度、不同煤矸石掺量以及不同辅助成分(生石灰、石膏、塑化剂等)对砂浆性能的影响。结果表明,当煤矸石掺量为70%、水泥为16%、生石灰为10%、石膏为4%、塑化剂为0.01%时,所配制干混砂浆能很好满足建筑砂浆要求,还可以大大降低砂浆成本。  相似文献   

12.
微波辐照激发煤矸石活性机理研究   总被引:15,自引:0,他引:15  
通过XRD和SEM等测试手段,对微波辐照煤矸石硅酸盐水泥砂浆的微结构进行了分析。结果表明,微波辐照煤矸石能充分激发煤矸石的活性,使煤矸石与硅酸盐水泥水化后所产生的Ca(OH)2充分反应生成CaCO3等物质,从而提高普通混凝土制品的耐久性和强度。  相似文献   

13.
检测和分析了自燃煤矸石的火山灰活性 ,考察了水泥熟料、石膏和激发剂不同掺入量对自燃煤矸石水泥石力学性能的影响 ,并对其水化产物进行了分析。试验结果表明 :当石膏和激发剂掺入量均为 7%时 ,可制得自燃煤矸石掺量达 4 6 %的自燃煤矸石—外加剂—水泥基材料 ,其抗压强度达 5 0MPa左右  相似文献   

14.
疏水改性煤矸石砂浆性能的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
煤矸石物理化学特性复杂、强度低、疏松多孔的特点,限制了其在建筑材料中的大量使用。本文采用疏水溶液浸泡的方式,在非煅烧、非预湿的条件下对煤矸石进行了改性。在系统研究改性前后煤矸石基本性质的基础上,设置0%、30%、50%、70%和100%共5种疏水改性后煤矸石质量替代率,以接触角、抗折强度、抗压强度、氯离子电通量为表征参数,分析了不同疏水改性煤矸石替代率对砂浆性能的影响。研究结果表明:采用本文的制备方法,当改性煤矸石替代率低于50%时,可实现煤矸石砂浆表面的疏水状态;抗压强度随改性煤矸石替代率的增大呈现降低的趋势,最大降低率为不掺加改性煤矸石时的15.7%;替代率为30%时,28 d抗压强度为58.5 MPa。不同改性煤矸石替代率下砂浆电通量均小于250 C,表现出优秀的抗氯离子渗透性。替代率为30%时电通量最小,为130 C。采用本研究提出的疏水改性的方法,可以使煤矸石在非煅烧、非预湿的条件下,保证砂浆良好的力学强度和抗氯离子渗透性能,实现煤矸石的充分利用。  相似文献   

15.
针对加气煤矸石混凝土抗压强度和导热系数问题,制作加气煤矸石混凝土薄板试件,研究了水灰比、铝粉含量对加气煤矸石混凝土抗压强度和导热性能影响。结果表明:抗压强度随水灰比增加而逐渐降低,呈负相关,负相关显著性强弱表现为铝粉含量2 kg>铝粉含量3 kg>铝粉含量4 kg;导热系数随水灰比增加而逐渐降低,呈负相关;水灰比一定条件下,导热系数随抗压强度增长而增大,呈正相关,正相关显著性强弱表现为水灰比0.54>水灰比0.46>水灰比0.38。加气煤矸石混凝土抗压强度和导热系数能满足一般建筑物要求,这为加气煤矸石混凝土应用提供了试验依据。  相似文献   

16.
杨凤玲  严生 《中国矿业》2005,14(3):34-36,51
通过低温合成煤矸石水泥正交试验,分析了有关因素对煤矸石水泥抗压强度的影响规律和效果,确定了低温合成煤矸石水泥的最佳工艺参数。同时证明低温合成这一技术路线是可行的,为煤矸石的综合利用寻找到一条新的途径。  相似文献   

17.
直接轻烧电子含氟污泥用作水泥混合材存在火山灰活性不高、标准稠度需水量大等问题,本文利用煤矸石作为电子含氟污泥的硅铝质补充来源,将电子含氟污泥和煤矸石混合后轻烧制备水泥混合材,通过强度活性指数、水泥力学强度、水泥标准稠度需水量、凝结时间、粒度分布等指标以及X射线衍射和扫描电镜等试验,探究了轻烧煤矸石混合电子含氟污泥制备水泥混合材对水泥性能的影响。结果表明:与直接轻烧电子含氟污泥制备的水泥混合材相比,煤矸石混合电子含氟污泥后轻烧制备的水泥混合材,可改善水泥的颗粒级配,降低水泥的标准稠度需水量,提高水泥混合材的活性和所配制普通硅酸盐水泥强度,但会使水泥的初凝时间延长、终凝时间缩短。  相似文献   

18.
为了有效地提高煤矸石资源化利用水平,针对抚顺矿区的煤矸石资源,在分析其化学成分和矿物组成基础上,采用煤矸石作为主要原料,辅以水泥、天然砂、粉煤灰及添加剂研究制备免烧砖。通过调整原料配比和成型压力,研究不同制备条件下免烧砖的微观结构特征和物理性能差异,如密度、含水率、抗压强度和抗折强度。通过正交试验获得优化原料质量配比和工艺参数分别为:东舍场煤矸石40%,天然砂42%;西舍场煤矸石70%,天然砂12%;汪良舍场煤矸石50%,天然砂32%;其它相同参数分别为粉煤灰5.14%、水泥12.86%、减水剂0.05%、水10%,成型压力20 MPa,常温养护28 d。获得的煤矸石基免烧砖性能符合JC/T 422—2007《非烧结垃圾尾砖》MU25标准要求,其中最高抗压强度和抗折强度分别为52.70 MPa和4.93 MPa。   相似文献   

19.
为探讨粉煤灰作为矿物掺合料对煤矸石骨料混凝土性能的影响,在制备煤矸石骨料混凝土试件时,掺入0%、15%、25%、35%、50%的粉煤灰来取代等量的水泥,进行抗压强度、碳化性能及干燥收缩性能试验研究。结果表明,煤矸石混凝土的抗压强度随粉煤灰掺量的增加而有所降低,且均低于未掺粉煤灰时的混凝土抗压强度,但当掺量为15%时,煤矸石混凝土的90 d抗压强度超过同龄期未掺粉煤灰时的混凝土强度;当粉煤灰掺量不超过35%时,对煤矸石混凝土的碳化性能影响不大,粉煤灰掺量达到50%时,煤矸石混凝土的抗碳化能力降低明显;随粉煤灰掺量的增加,煤矸石骨料混凝土的干燥收缩性能得到改善,50%粉煤灰掺量时干燥收缩率最小。试验表明,适量掺入粉煤灰能改善煤矸石骨料混凝土的后期强度及干燥收缩性能,且对碳化性能影响不大,这为煤矸石骨料混凝土掺粉煤灰的应用提供了试验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号