首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
攀钢高炉瓦斯泥的综合利用   总被引:1,自引:3,他引:1  
高炉瓦斯泥中含有大量的铁,如能回收则是很好的炼铁原料。本文针对攀钢高炉瓦斯泥含铁率较低、含锌率较高的特点进行了磁选、重选、浮选探索试验,最终确定采用重—浮联合的最佳工艺流程,获得铁品位47.20%、回收率49.24%的铁精矿,并使锌集中到尾矿中,以利于锌的回收。  相似文献   

2.
高炉瓦斯泥(灰)资源化循环利用研究现状   总被引:6,自引:0,他引:6  
详细综述了高炉瓦斯泥(灰)的应用工艺,通过磁选、浮选、浸出、焙烧等物理化学矿物工艺处理高炉瓦斯泥(灰),回收锌、铟等有色金属,使瓦斯泥(灰)重新返回高炉使用,实现了金属和矿物资源的循环利用,也减轻了对环境的污染。最后指出了瓦斯泥(灰)综合利用中存在的一些问题和今后的研究方向。  相似文献   

3.
从高炉瓦斯灰回收铁的试验研究   总被引:1,自引:1,他引:0  
对包钢瓦斯灰进行了工艺矿物学分析,并进行了弱磁选一高梯度强磁选和磁化焙烧一弱磁选工艺试验研究.结果表明,弱磁选一强磁选试验能回收大部分铁矿物,并且使铁矿物与碳、锌等矿物得到有效的分离,铁精矿的品位达到55.42%,回收率79.48%;另外在磁化焙烧一弱磁选最佳试验条件下能获得铁精矿品位60.70%,回收率达到70%以上.  相似文献   

4.
在对瓦斯泥进行样品性质研究的基础上,采用浮选—磁选—重选的原则流程,回收碳、铁、锌三种有用元素。试验结果表明,当柴油用量为500 g/t,2#油用量为25 g/t,六偏磷酸钠用量为100 g/t,矿浆浓度为10%,采用一粗两精一扫工艺,可获得固定碳含量66.12%、回收率66.19%的碳精矿产品。对碳尾矿进行弱磁选—强磁选工艺,可得到铁品位为53.97%、回收率94.86%的铁精矿。对铁尾矿进行重选试验,使用悬振锥面选矿机最终使锌富集至18.99%,回收率为77.03%。该试验流程为类似瓦斯泥的回收利用提供了基础数据。  相似文献   

5.
高炉瓦斯泥是一种资源,在对其原矿性质和物相组成等进行分析的基础上,研究了铁、碳综合回收的几种不同工艺,结果表明,与磁选-浮选、磁选-重选-浮选、重选-浮选三个工艺相比,浮选-重选、单一浮选的铁、碳回收率和品位比较高,其中浮选-重选流程的铁回收率和碳品位最高,分别达到69.54%和66.76%,单一浮选的铁品位和碳回收率最好,分别为56.19%和64.93%。由于瓦斯泥原矿的性质对其工艺影响很大,因此本文研究内容仅对类似瓦斯泥性质进行提铁、碳综合回收具有一定的参考价值。  相似文献   

6.
高炉瓦斯泥回收利用新技术   总被引:6,自引:0,他引:6  
高炉瓦斯泥中含有大量的铁、碳 ,是很好的炼铁原料。但由于高炉瓦斯泥含锌量超标 ,必须先进行脱锌处理才可以回收利用。本文分析了几种典型的高炉瓦斯泥的粒度分布、化学组成及按粒度分组的化学组成 ,介绍了高炉瓦斯泥旋流脱锌技术与流程 ,并对我国发展该方法回收高炉瓦斯泥进行了可行性分析。  相似文献   

7.
梅山钢铁公司每年在生产中产生高炉瓦斯泥约2万t,历年堆存已有数10万t,长期堆放既占用工业场地,又污染环境。瓦斯泥中w(Fe)为34-64%,w(ZnO)为9-31%。为治理环境和回收瓦斯泥中的铁,1999年,该公司委托赣州有色冶金研究所进行回收试验研究。试验采用弱磁(人工、永磁块,一粗一精)、强磁(Slon立环脉动高梯度磁选机一次选别)流程选别,结果为:综合铁精矿含铁50%以上,回收率达90%以上,除锌率达65%以上。氧化锌富集在强磁尾矿中,可采取其他措施进行回收。梅山钢铁公司从高炉瓦斯泥中回…  相似文献   

8.
张晋霞  邹玄  张晓亮  牛福生 《中国矿业》2015,24(4):96-99,104
在对高炉瓦斯泥性质、矿物成分分析的基础上,采用选冶联合技术对其有价元素进行了提取研究。试验研究表明,瓦斯泥原料经摇床分选后,获得了铁品位为53.25%,回收率为51.05%的铁精矿;摇床尾矿经浮选柱一次粗选两次精选工艺流程,得到碳品位为74.21%、作业回收率为66.39%的碳精矿;最终尾矿采用硫酸进行浸锌试验,锌的浸出率可达97.85%,向浸出液中加入硫化钠用量为200kg/t时,Zn回收率达到86.36%。  相似文献   

9.
某钢铁厂高炉瓦斯泥综合利用试验研究   总被引:7,自引:2,他引:7  
对广东某钢铁厂排出的高炉瓦斯泥的综合利用试验研究,采用选冶流程,可有效回收高炉瓦斯泥中的铁、铅、锌、铋、碳等有用成分,而且可减少排放堆存造成的污染,有利于生态环境的保护。  相似文献   

10.
对含铁品位为37.89%的武钢高炉瓦斯泥,进行理化性能分析和矿物工艺学研究,采用磁选、重选(摇床、螺旋溜槽)等方法进行铁矿物回收,试验研究表明,采用两段重选工艺流程处理武钢高炉瓦斯泥,可获得精泥产率31.81%、含铁品位61.51%、铁回收率51.64%较理想指标,其中SiO2、Al2O3、CaO、MgO的含量都能满足...  相似文献   

11.
梅山铁尾矿强磁再选粗精矿深度还原试验   总被引:1,自引:0,他引:1  
杨龙  韩跃新  袁致涛  高鹏 《金属矿山》2012,41(7):148-150
由于梅山铁矿石中弱磁性铁矿物含量很高,导致梅山尾矿的铁品位较高。梅山铁矿选矿厂对该尾矿进行了强磁再选,获得了铁品位为31.80%的再选粗精矿。为获得合格的铁产品,东北大学对该再选粗精矿进行了深度还原工艺技术条件研究,结果表明,在还原温度为1 275 ℃,还原时间为60 min,料层厚度为30 mm,配碳系数为2.0,煤粉粒度为-2.0 mm情况下进行深度还原,金属化率为89.20%的还原物料经1段弱磁选可获得铁品位为80.05%、回收率为98.03%的弱磁选铁粉。  相似文献   

12.
针对高炉瓦斯泥中重要有价元素铁锌分离回收利用难问题,以优化高炉瓦斯泥加热自还原热工参数、实现铁锌良好分离为目的,开展了高炉瓦斯泥球团加热自还原的单因素实验以及响应曲面中的BBD(Box-Behnken Design)法设计的因素优化实验。铁锌还原分离效果以铁、锌的金属化率作为评价指标。结果发现:各热工参数对铁、锌氧化物还原分离影响程度为加热时间>温度>造球压力;铁锌还原分离优化的热工参数为1299.95℃、加热时间为47.05 min、造球压力为8 MPa。热工参数优化条件下的BBD法实验得到:球团还原过程中铁的金属化率达94.67%、锌的金属化率达96.08%,铁主要以金属铁形式留存于球团中,锌以气态单质锌进入烟尘,在烟尘中氧化成为ZnO,铁锌实现了良好的分离。   相似文献   

13.
梅山铁矿石为磁铁矿-赤铁矿混合型铁矿石,铁品位为37.82%。现场采用不同的工艺分别对50~20、20~2、2~0.5 mm粒级进行预选,不仅预选尾矿铁品位较高,且50~20 mm粒级跳汰预选抛尾量非常低、耗水量大、生产指标不稳定、设备故障率也高。为了改善预选效果,进行了系统的选矿试验。结果表明,将现场50~20 mm粒级再破碎至20~0 mm并相应分级后,-0.5 mm粒级采用湿式筒式弱磁选+立环脉动高梯度强磁选,2~0.5 mm粒级采用筒式弱磁选+立环脉动高梯度粗粒强磁选,20~2 mm采用筒式中磁干选+辊式强磁干选,取得了铁品位为56.31%、铁回收率为3.65%的铁精矿,以及铁品位为40.81%、铁回收率为89.92%的预选精矿,预选尾矿铁品位16.75%、产率达11.59%,预选指标较好。  相似文献   

14.
从梅山高炉瓦斯泥中回收铁精矿的研究   总被引:10,自引:1,他引:10  
通过对国内外高炉粉尘利用情况的分析、研究,结合梅山高炉瓦斯泥的性质、特征和现状,提出用弱磁—强磁选的选矿工艺,从中回收铁精矿的设想。通过试验室试验,取得了较好的技术经济指标,达到了预期效果。该工艺可用于生产实践,并可推广应用。  相似文献   

15.
梅山强磁选尾矿强磁再选—分步浮选试验研究   总被引:4,自引:1,他引:3  
杨龙  韩跃新  袁志涛 《金属矿山》2010,39(4):183-186
梅山铁矿石中弱磁性铁矿物含量很高,主要为赤铁矿和菱铁矿,造成强磁选尾矿的铁品位高,有较多的的赤铁矿和菱铁矿没有被回收。对该尾矿先采用较高的磁场强度进行强磁再选,然后再对强磁再选精矿通过分步浮选进行菱铁矿与其他矿物的分离及赤(褐)铁矿与脉石矿物的分离。试验获得的最终精矿铁品位为42.75%,高于目前生产过程中强磁扫选的精矿品位,略低于强磁粗选的精矿品位,可以提高梅山铁矿选矿厂铁回收率5个百分点以上。  相似文献   

16.
为解决梅山铁矿现有-2+0.5 mm系统选别流程中存在的尾矿品位高、精矿卸矿困难、选矿效率低等问题,使用ZCLA选矿机取代原有弱磁选-中磁选设备进行预选。结果表明,采用ZCLA设备预选的新流程和原有流程,精矿品位均能达到56%,新流程精矿产率、金属回收率、选矿效率分别提高了6.33、10.23和8.10个百分点,尾矿产率、品位分别降低了6.23和4.36个百分点。通过物相分析得出新流程尾矿中的Fe3O4、Fe2O3品位比原流程分别降低了0.744和1.3个百分点。对预选后的精矿进行实验室模拟选别,结果表明两种流程效果相近,综合精矿品位都能达到59.5%以上,产率达到93%以上,回收率达到98.5%以上。  相似文献   

17.
云锡公司二次资源锡尾矿中有价元素品位较低,主要目的矿物钨、锡均达到“双零”级别,考虑到综合回收目的元素价值有限。需要先进行预抛和回收铁矿物,以降低粗粒级和铁矿物对后续作业的干扰,同时节约后续选别成本,对锡尾矿进行筛分预抛、弱磁选、强磁选试验研究。试验结果表明,当采用筛分粒径为0.150mm、磁滚筒磁场强度为0.12T;高梯度磁选机磁场强度0.4T、矿浆流量为12L/min、脉动冲次为200次/min、磁介质为3.0mm。最终可获得粗粒级抛除率12.64%,弱磁选Fe精矿品位54.83%、回收率4.83%,强磁选Fe精矿品位42.52%、回收率8.26%。  相似文献   

18.
胡义明  刘安平  徐望华 《金属矿山》2013,42(8):47-52,87
为了给梅山铁矿选矿厂降低铁精矿硅含量提供技术支持,在查明现场铁精矿SiO2含量高的原因基础上,采用4种方案进行了从现场浮硫尾矿获取SiO2含量<4%的铁精矿的选矿试验。结果表明,方案1(在现场选铁流程基础上增加弱磁精选并在高梯度磁选时采用低场强)、方案3(弱磁选-高梯度磁选-细筛分级-筛上再磨再选)和方案4(弱磁选-高梯度磁选-弱酸性正浮选)均可获得SiO2含量<4%的铁精矿,但方案1精矿铁品位相对较高而铁回收率相对较低,方案3和方案4则铁回收率相对较高而精矿铁品位相对较低。因此,究竟采用哪种方案,还应通过进一步的扩大试验乃至工业试验予以确定。  相似文献   

19.
针对含铅0.39%、含锌0.30%的铁矿,采用碳热还原脱除铅锌杂质,利用X射线衍射、扫描电子显微镜及能谱分析等检测手段考察了铁矿还原焙烧过程的反应行为及物相演变规律。结果表明,该铁矿中铅主要以氧化铅和铅铁矾形式存在,锌主要以氧化锌形式存在; 升高焙烧温度及延长焙烧时间均有利于铅锌脱除; 在1 200 ℃下焙烧60 min时,铁矿中铅和锌脱除率均在90%以上。含铅锌铁矿在碳热还原焙烧过程中会生成中间产物铁橄榄石,并最终转变为金属铁和游离的氧化硅固溶体。还原焙烧产物经磁场强度80 kA/m弱磁选可获得铁品位91.91%和铁回收率84.78%的铁精矿,且铁精矿中铅和锌含量分别为0.01%和0.03%,可作为电炉炼钢原料使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号