首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
在高铁生物浸铜液中通入H2S气体, 生成硫化铜渣, 双氧水-硫酸浸出硫化铜渣, 得到硫酸铜溶液, 后经蒸发浓缩、冷却结晶制得硫酸铜。研究结果表明: 当生物浸出液pH=1, 反应温度为30 ℃, 反应时间为3 h时, 在生物浸铜液中通入硫化氢, 铜沉淀率接近100%; 双氧水-硫酸浸出硫化铜渣, 当双氧水与铜物质的量之比为6.4∶1, 反应温度为50 ℃, 液固比为15∶1, 硫酸浓度为3 mol/L, 反应时间为2 h时, 铜浸出率为92.1%; 所得浸出液中硫酸浓度为343.49 g/L, Cu2+浓度为 25.33 g/L, 通过蒸发浓缩、冷却结晶得到纯度为96%的硫酸铜, 其质量达到工业用硫酸铜质量标准(GB437-93)。  相似文献   

2.
采用"浸出—铜萃取—除杂—锌萃取"工艺回收某铜渣中的铜锌,结果表明,直接酸浸对铜渣具有较好的浸出效果,酸用量为1.4倍铜渣量,铜渣细度为-0.074mm占95%时,铜锌的浸出率分别达73.25%和88.66%;在萃取剂用量为10%、水相pH值为2、萃取相比O/A为1时,铜萃取率达99.95%,且杂质萃取率较低;在pH值为5条件下,可几乎完全沉淀铁铝,且对钙镁也有一定的去除作用;P507对锌萃取具有较好的选择性,经三级萃取,锌萃取率可达94.42%,而杂质萃取率较低,反萃液较纯净。  相似文献   

3.
为了提高硫酸化焙砂中金和铜的浸出率,降低尾渣金品位,减少铜对氰化浸出过程的影响,考察了焙砂粒度、硫酸浓度、温度对硫酸脱铜率和脱铜渣氰化浸金率的影响。结果表明,焙砂(矿粉粒度-0.045 mm粒级占90.16%)在酸度25 g/L、液固比1.5∶1、80 ℃下浸出2 h,硫酸脱铜率达93.62%。脱铜渣在NH4HCO3用量10 kg/t、液固比1.5∶1、NaCN浓度0.10%条件下浸出60 h,金浸出率高达98.04%。根据研究结果,通过提高硫酸脱铜温度、硫酸浓度和氰化浸出过程增加旋流器和浸出槽数,采用两段浸出-两段洗涤措施,对现有生产流程进行了优化,铜和金回收率得到了明显提高,获得较好的经济效益。  相似文献   

4.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

5.
阜康镍冶炼厂含镍铜渣冶炼工艺研究   总被引:1,自引:0,他引:1  
李晔 《矿冶》2000,9(3):59-62,38
采用焙烧—浸出—电积工艺处理阜康镍冶炼厂含镍铜渣。在焙烧温度 80 0~90 0℃、浸出温度 6 5~ 70℃、浸出时间 12 0min的条件下 ,可得到铜浸出率为 97%。由于浸出液含铁极低、含镍低于 1g/L ,不需净化可直接电积。工业生产中可抽取一定量的铜电积老液送镍冶炼系统 ,防止铁、镍累积。含镍铜渣中的贵金属全部进入浸出渣 ,浸出渣率很低有利于贵金属富集。该工艺流程结构简单 ,金属回收率高 ,含镍铜渣中有价金属可综合回收 ,无环境污染  相似文献   

6.
采用选择性脱铜—氰化提取金银的湿法处理工艺综合回收含金银硫酸烧渣中的有价金属。重点介绍该工艺中选择性脱铜试验研究。确定的最佳选择性脱铜条件为:加酸量60 kg/t烧渣,磨矿粒度-0.045 mm占80%,浸出温度80℃,浸出时间2 h,矿浆浓度40%;在该条件下,铜、锌浸出率分别为84.36%和62.28%,铁浸出率仅为2.79%,金、银等不被浸出,取得了较好的选择性脱铜效果;脱铜渣氰化金、银浸出率分别为85.61%和69.91%,得到的铁精矿含铁64.16%,其它杂质金属含量较低,实现了烧渣中有价金属的综合利用。本研究有效解决了传统硫酸烧渣氰化提取金、银存在的浸出率低,得到的铁精矿杂质金属含量高等问题。  相似文献   

7.
应用浮选和与黄铁矿焙烧工艺从铜渣中回收有价金属   总被引:2,自引:0,他引:2  
研究了从土耳其Kure地区堆存的老铜渣中回收铜和钴的工艺.所研究的铁橄榄石类型的堆存老铜渣含有1.24%Cu、0.53%Co和51.63?.研究了两个不同回收有价金属的方法.第一个方法是铜渣与黄铁矿一起焙烧,然后浸出.第二个方法是铜渣先浮选回收铜,浮选尾矿与黄铁矿一起焙烧,焙砂浸出.试验结果表明,第二个方法适于处理这种类型的铜渣.在浮选阶段获得的铜精矿铜品位为11%,铜回收率为77%.浮选尾矿的钴回收率为93%.在焙烧试验中研究了焙烧时间、焙烧温度和黄铁矿与铜渣重量比对铜和钴溶解率的影响,并确定了最佳的焙烧条件.在500℃温度下和黄铁矿与铜渣重量比为3:1时焙烧1h后,钴的溶解率为87%,铜的溶解率为31%.根据本试验结果,推荐了处理这种铜渣的工艺流程.  相似文献   

8.
研究了从土耳其Kure地区堆存的老铜渣中回收铜和钻的工艺.所研究的铁橄榄石类型的堆存老铜渣含有1.24%Cu、0.53%Co和51.63%Fe.研究了两个不同回收有价金属的方法.第一个方法是铜渣与黄铁矿一起焙烧,然后浸出.第二个方法是铜渣先浮选回收铜.浮选尾矿与黄铁矿一起焙烧,焙砂浸出.试验结果表明,第二个方法适于处理这种类型的铜渣.在浮选阶段获得的铜精矿铜品位为11%,铜回收率为77%.浮选尾矿的钴回收率为93%.在焙烧试验中研究了焙烧时间、焙烧温度和黄铁矿与铜渣重量比对铜和钴溶解率的影响,并确定了最佳的焙烧条件.在500℃温度下和黄铁矿与铜渣重量比为3:1时焙烧1h后,钴的溶解率为87%,铜的溶解率为31%.根据本试验结果,推荐了处理这种铜渣的工艺流程.  相似文献   

9.
铜渣中含有铜、铁、锌和银等多种有价金属,作为一种重要的二次资源,其回收利用工艺一直是研究的热点及难点。根据国内外铜渣回收利用文献,简述了火法铜冶炼过程中所产生铜渣的物相组成,从直接浸出、间接浸出、微生物浸出三个方面详细综述了湿法工艺处理铜冶炼渣的最新研究进展及优缺点,指出了现阶段湿法浸出铜冶炼渣存在的问题,对铜冶炼渣湿法工艺研究进行了展望。   相似文献   

10.
国外某含铜金矿碳酸盐含量较高,不宜采用硫酸预浸铜-浸铜渣氰化回收金的工艺。针对该含铜金矿的性质特点,开展了氨氰选择性浸金及浸出贵液臭氧除铜工艺试验研究,研究结果表明:在给矿粒度-0.074mm95%,硫酸铵8kg/t,氰化钠0.4kg/t,石灰4kg/t(pH为9~10),矿浆浓度40%,金浸出率约90.3%;氨氰浸出贵液初始pH=10~11,通入臭氧除铜,铜沉淀率达99.0%,金基本不损失,沉铜渣铜品位33.89%,可以铜精矿形式出售,为该矿的开发利用提供可行的技术方案。  相似文献   

11.
采用XRF, XRD, XPS, SEM-EDS, Mossbauer等手段对炼铜反射炉水淬渣进行了工艺矿物学研究, 结果表明, 渣中含铜106%, 主要以冰铜存在;TFe含量为36.41%, 其中Fe2SiO4 53.5%, Fe3O4 32.5%, Fe2O3 14.0%。Fe的存在形态决定了在酸浸中铁会大量消耗酸, 其浸出率可达82.6%, 影响了铜的浸出, 而加入H2O2可有效地抑制铁的浸出, 铜的浸出率相应提高。在60 ℃、浸出30 min、搅拌速度500 r/min、酸浓度60 g/L、双氧水100 L/t时, 铜的浸出率可达66.9%;双氧水的加入对电位有影响, 对铜和铁的浸出分别起到促进和抑制作用, 高电位更有利于铜的浸出。  相似文献   

12.
在氢氧化钠溶液中釆用通氧加压强化浸出工艺对黑铜泥进行脱砷,实验结果表明:在NaOH浓度为50 g/L、浸出温度140 ℃、氧分压0.6 MPa、液固比8 mL/g、浸出时间1.5 h、搅拌速度600 r/min的较优工艺条件下,黑铜泥中砷浸出率为96.74%,铜、锑、铋浸出率分别仅为1.19%、2.23%、1.08%,实现了砷的选择性脱除。碱浸液采用冷却结晶回收砷酸钠,结晶母液补加适量氢氧化钠返回浸出。渣中锑、铋、银等有价金属得到高度富集。  相似文献   

13.
黑铜渣氧压硫酸浸出脱铜脱砷实验研究   总被引:4,自引:3,他引:1  
在硫酸体系中通氧加压浸出黑铜渣,结果表明,在硫酸质量浓度180 g/L、浸出温度140 ℃、氧分压0.8 MPa、液固比8 mL/g、浸出时间3 h、搅拌速度600 r/min、黑铜渣粒径178 μm的较优工艺条件下,黑铜渣中Cu、As和Ni浸出率分别为97.59%、95.42%和98.37%,Sb、Bi浸出率分别仅为6.78%和2.31%,实现了黑铜渣中Cu、As、Ni的高效脱除,浸出渣中锑、铋、银等有价金属得到高度富集。  相似文献   

14.
某铜冶炼厂的电炉贫化渣铜、铁含量分别为1.24%和31.80%,主要可见铁橄榄石相和磁铁矿相。为了确定该电炉贫化渣的开发利用工艺,进行了工艺条件研究。结果表明,铜渣在磨矿细度为D90=52.6μm,硫酸的浓度为150 g/L,过氧化氢添加量为150 m L/kg,液固比为5 m L/g,浸出温度为60℃,浸出时间为60 min,弱磁选磁场强度为160 k A/m情况下,可获得铜浸出率为67.15%,铁精矿铁品位为56.01%、铁回收率为62.38%的试验指标,可较好地实现该资源中铜、铁的回收。  相似文献   

15.
聂炀  张旭  毛圣华 《矿冶》2011,20(2):72-75
以低品位氧化铜矿为原料,采用浸出、萃取、反萃、结晶和精制工艺制备电镀级硫酸铜。重点考察了萃取剂浓度、相比(O/A)、萃取时间和水相中硫酸浓度等因素对铜萃取率的影响。结果表明,采用硫酸浸出氧化铜,铜浸出率可达65%。浸出液用萃取剂ACORGA M5640萃取铜,当萃取剂浓度为20%,相比为1/3,萃取时间为120 s,水相中硫酸浓度为1.5 g/L,稀释剂为煤油时,铜萃取率可达90%以上。负载有机相经反萃,反萃液经结晶和精制后,可得到纯度为99.35%的电镀级硫酸铜。  相似文献   

16.
为了研究黄铁矿经高温焙烧制取硫酸后产生的铜品位为0.87%硫酸渣的铜浸出动力学规律,采用X射线衍射分析等方法分析了矿石的性质,研究了矿石粒度、初始酸浓度、液固比、搅拌速率、浸出温度和浸出时间等因素对硫酸渣矿样中铜浸出的影响,采用未反应收缩核模型对硫酸渣浸出过程进行动力学分析。结果表明,各因素对硫酸渣铜浸出的浸出率有较大影响;从浸出过程控制模型、浸出动力学方程、浸出反应表观活化能方面确定了硫酸渣浸出过程的主要控制步骤为内扩散过程控制,得出浸出反应的表观活化能Ea=19.96 kJ/mol。  相似文献   

17.
炼铜烟灰加压浸出试验研究   总被引:1,自引:0,他引:1  
为利用炼铜烟灰中的有价金属,采用加压浸出法浸出铜冶炼烟灰中的铜和锌,考察了温度、压力、始酸浓度、浸出时间对浸出效果的影响。研究结果表明,最佳浸出条件为: 温度160 ℃、压力1.2 MPa、始酸浓度130 g/L、浸出时间3 h,该条件下铜、锌浸出率分别为98.9%和97.8%。  相似文献   

18.
从铅冰铜中高效选择性提取铜的工艺研究   总被引:1,自引:0,他引:1  
采用高温高压纯氧氧化法选择性提取铅冰铜中铜, 研究了硫酸用量、浸出温度、反应时间、液固比、氧气压力、搅拌速度以及分散剂木质素用量对铜浸出率的影响及对浸出液中铁含量的影响。铅冰铜经氧压浸出后进行液固分离, 铅冰铜中的铜进入液相中, 绝大部分铁以赤铁矿的形式与铅、银、金等有价金属一起进入渣相中; 浸出后的硫酸铜溶液经调酸后直接进行旋流电解可得到合格的阴极铜产品, 浸出渣返回铅冶炼系统综合回收铅、银、金等有价元素。高温氧压浸出铅冰铜, 铜浸出率可达93.5%, 阴极铜产品质量达到99.975%, 有效实现了铅冰铜中铜的选择性提取。  相似文献   

19.
将火法炼铜所得含砷高达22%的难溶性白烟灰进行氧化焙烧处理, 然后用稀酸对铜进行浸出试验, 考察了焙烧时间和焙烧温度对铜浸出率的影响, 并对其热力学性质进行了分析。试验结果表明, 用2 mol/L的H2SO4以4∶1的液固比对白烟灰直接浸出, 铜的浸出率为45%;在焙烧温度500 ℃以上焙烧1 h, 用1 mol/L的H2SO4在相同条件下浸出, 可以使白烟灰中铜的浸出率达到98%, 同时, 可回收白烟灰中95%以上的三氧化二砷。对相关氧化反应的热力学数据进行分析计算表明, 焙烧后铜的化合物变成了易浸出的氧化物或硫酸盐, 因而浸出率提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号