首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
根据煤炭及煤层气勘查数据,分析了松河井田煤层气开发地质、煤储层渗透性和含气性条件,估算了煤层气资源量,并结合松6井工程开发效果,综合评价了该区煤层气地面抽采潜力。结果表明:松河井田煤层气赋存及保存条件好,薄-中厚煤层群发育,且煤层埋深、煤体结构、渗透性及含气性相对较好,埋深对煤层含气量控制作用明显,300~400 m为含气梯度转折深度,煤层气资源量达66.96×108m3;松6井采用"多段合层压裂、合层排采"工艺,实现单井单压裂段产气量长期超过1 000 m3/d的突破,但产气量波动较大,建议加强合层排采层间矛盾问题研究;鉴于该区地形、交通及地质条件的制约,建议采用"地面丛式井钻井、多段合层压裂"开发方式。  相似文献   

2.
基于成庄井田西部15号煤储层物性资料和煤层气生产资料,开展了煤储层物性对煤层气井产气量影响研究。结果表明:煤储层物性对煤层气产出特征和煤层气井产气量具有重要影响,不同的煤储层物性参数对煤层气井产气量的影响和作用机理各异。煤层厚度越大、煤层气含量越高,煤层气资源量、资源丰度及含气饱和度越高,有利于煤层气井高产和提高累计产气量;煤储层压力、煤层渗透率越高,越有利于驱动煤层气渗流高效产出、煤层气井高产和提高采收率;煤的高变质,提高了煤的孔渗性、吸附性和煤层气储集性能,有利于煤层气井高产稳产。但延迟了煤层气井产气高峰期时间,对缩短煤层气开发周期亦不利。  相似文献   

3.
高河井田煤层气在相同地质条件下排采情况差异性明显,以井田内部分煤层气井产气量资料为基础,分析了高河井田不同井组产气特征,并分析了影响煤层气产量的地质因素和工程因素。结果表明:井田内3#煤层厚度大,埋深适中,煤级以瘦贫为主,是良好的气源岩,但其渗透率低,区内张性构造发育,局部含气量低,是不利储层,因此,在不同构造位置应考虑不同的工程方案。  相似文献   

4.
基于潞安矿区主力煤层3号煤煤田勘探资料及煤层气试井资料,综合评价了其储层物性。研究显示:潞安矿区3号煤储层煤层变质程度高,厚度大,厚度在4m左右,埋深适中,大部分埋深小于1000m;煤层含气量较高但含气饱和度低,平均含气量在10m3/t左右。储层压力梯度低为欠压储层,部分区域地下水环境较为封闭适宜煤层气保存,渗透性较差为低渗储层。与晋城矿区相比,在煤级变化基本相似的条件下,在煤层气含量及渗透性方面均处于劣势。因此对于地面煤层气开发来说,寻找圈定煤层气的富集高渗甜点区,是确保地面开发成功的必要条件。  相似文献   

5.
分析陕西省彬长矿区大佛寺井田的地质构造、煤层特征、储层渗透性、煤吸附特征、煤层含气量、煤层气资源潜力,研究地面煤层气开发方式的技术特点和适应性特征,采用数值模拟手段及煤层气CBM-SIM模拟软件对垂直井和多分支水平井在大佛寺井田的抽采效果进行了预测,为以后彬长矿区及国内其他类似地区的低阶煤地面煤层气开发提供了技术支撑和参考。陕西彬长矿区是我国典型的低阶煤矿区,4号煤层为主采煤层,煤层厚度大,含气量低,渗透性较好。测试结果表明,垂直井与水平井在大佛寺井田有着良好的抽采效果,垂直井单井最高日产气量2 221.26 m^3,5个分支的水平井最高日产气量超过25 000 m^3。在今后矿区煤层气开发中,应结合地质条件、抽采目的、开发工艺和投资成本等因素,选择最优开发方式。  相似文献   

6.
大佛寺井田位于彬长矿区的南部,根据勘查钻孔显示煤层含气量低,但煤层厚度较大,煤层气资源量丰富,具有很高的开采利用价值。为了弄清该井田煤层气储藏特征,合理指导有效开采,以大佛寺井田4煤为例,通过对各地质因素与参数井含气量进行相关度分析,确定了影响4煤含气量的几个主控因素,然后依据模糊综合评价的思想建立评判体系,最后在MapGIS平台下实现数据的处理与叠加分析,完成对大佛寺井田4号煤层煤层气资源有利区的预测。研究结果表明:影响大佛寺井田4号煤层含气量的主控因素为:煤层厚度、埋深、变质程度及上下部延安组泥岩厚度,煤层气储藏最有利区、有利区、较有利区、不利区和最不利区分别占井田面积的8%、30%、40%、17%和5%。  相似文献   

7.
韩城矿区地质构造复杂,构造对煤层气的控制作用明显。为了揭示构造对韩城矿区煤层气富集与开发的影响,通过挖掘整理韩城矿区基底沉降史,厘定煤层气成因、划分煤级平面分布,分析含气量与构造样式、煤层埋深的关系。研究发现,韩城矿区浅部受基地抬升与构造应力共同作用,煤层气为次生生物成因气叠合热成因气;深部经历深成变质作用为典型的高煤阶热成因气。受控于不同构造样式与现今埋深,北部层滑构造导致的构造煤发育,含气量较南部高、中深部含气量较浅部高。基于构造控制的煤层气赋存特征、煤体结构和应力环境的复杂性分析,提出东北区的桑树坪井田、下峪口井田,东南区的象山井田构造煤发育,建议采用"压力-应力协同释放为主的矿井卸压抽采模式";西部的王峰和薛峰井田含气量高、煤体结构相对完好,建议采用"排水降压为主的地面井降压开采模式"。  相似文献   

8.
以沁水盆地南部晚古生界山西组3#煤层、石炭系太原组9#煤层和15#煤层为主要目的煤层,在总结煤层气解吸影响因素条件的基础上,从地质和工程2方面出发,结合数值软件模拟计算,研究了煤厚、有效埋深、孔隙度、渗透率、含气量、含气饱和度、煤储层温度、压裂以及井距对煤层气解吸的影响,探讨了沁水盆地南部煤层气解吸影响因素特征及其对煤层气井产能的控制作用。  相似文献   

9.
通过煤层气井采样与现场解析测试,结合以往淮北煤田芦岭矿区、朱仙庄矿区的勘查资料,从煤系地层特征、构造、煤层封盖条件、含气性及储层物性特征等方面,对宿州煤层气田芦岭区煤层气地质特征进行分析。研究结果认为,芦岭区构造较简单,主要煤层8、10煤层厚度较大,埋深范围在300~1 200 m,具有较好的封盖条件;煤的变质程度较低,煤层含气量和含气饱和度中等,煤储层物性条件较好,有利于煤层气的保存,具有较好的开发利用前景。  相似文献   

10.
沁水盆地南部是我国煤层气研究与开发的热点地区,煤阶属于中~高阶煤,影响其煤层气井产气能力的主要地质因素有煤层厚度、含气量、渗透性、含气饱和度、构造条件和煤层的压裂改造效果等。本文在多年煤层气勘探开发取得的成果基础上,运用数值模拟技术,量化研究煤层气单井产气量对各项地质参数在沁水盆地南部煤层常见的分布范围内的敏感程度,在开发生产实践和开发方案编制中,可以其作为煤层气开发单元划分和高产富集区优选的参考依据。  相似文献   

11.
运用瓦斯地质理论,从煤体(埋深、厚度、变质程度)、煤体围岩、地质构造3个方面定性定量地对马依西一井3#煤层瓦斯含量进行分析,得出煤层厚度,变质程度,围岩封闭性和地质构造是该矿3#煤层瓦斯含量主要地质影响因素。  相似文献   

12.
针对沁水盆地深部煤层气地质与储层认识不足、开发措施还在探索阶段等现状,以寿阳区块15煤为研究对象,探讨了深部煤层气地质特殊性及开发对策。研究区15煤层发育稳定,煤层厚度基本在3m左右|煤层含气量大部分在10~12m3/t,纵向上受煤层埋深和变质程度的双重影响,含气量在埋深大约1200~1500m出现临界点后随深度增加逐渐降低。与其他深部地区“三高”特征不同,15煤深部储层表现为低压、高应力、中等地温的特征,属比较严重的低压力梯度和低地温梯度范畴。煤储层渗透性为高孔低渗分类,渗透率一般0.01~0.1mD,渗透性主要受煤层埋深、地应力、煤体结构和孔隙特征影响。根据15煤低水分含量、高孔隙度以及生产井产气特征,认为游离气含量可能具有较大的占比。最后提出,单独开发15煤层时可采用顶板岩层水平井分段压裂方式或围岩多分支水平井方式,该技术已在盆地南部15煤取得了产气突破|15煤层及9、3煤层多煤层开发时可采用围岩与煤层合压的垂直井方式,并对开发工程中的增产和排采工艺提出了相应的建议。  相似文献   

13.
煤层含气量是表征煤层气储层特征的关键参数之一。为了准确获取低煤阶煤层含气量,以彬长矿区大佛寺煤矿为例,根据Langmuir方程和排采过程中实测的临界解吸压力计算了4号煤层含气量。根据计算结果,4号煤层含气量为2.30~3.62 m^3/t,平均为2..87 m^3/t,是煤层含气量测试结果的0.88~1.93倍,符合低阶煤的特征,最为接近4号煤层原始含气量。并根据矿山岩层移动理论和渗流理论探讨了4号煤层含气量低而煤矿生产过程中瓦斯涌出量大的原因。分析认为,煤层在开采过程中,随着顶、底板岩层变形、垮落和移动,应力释放使煤体产生大量的新生裂隙,改变了煤体结构特征,促使煤层渗透性发生了根本性的改变,形成卸压增透和增流效应,造成大佛寺煤矿瓦斯涌出量急剧增大。   相似文献   

14.
瓦斯是地质作用的产物,从地质角度研究煤层瓦斯赋存规律及其控制因素是矿井瓦斯防治最为基础的工作和行之有效的方法。基于煤田地质勘查、矿井地质及相关瓦斯测试参数等资料,采用瓦斯地质理论和数理分析方法,对沙曲矿2号煤层瓦斯赋存规律进行了研究。研究结果表明:沙曲矿2号煤层瓦斯赋存规律主要受地质构造、地下水动力条件、煤层埋深、煤层围岩特征、煤变质作用等地质因素及其耦合作用控制。地质构造多具有封闭保存瓦斯性能,是控制煤层瓦斯赋存局部不均衡性的关键地质因素;地下水动力弱且具有承压性,对瓦斯保存起到良好的封堵效应;一定厚度的泥质岩是瓦斯保存的良好盖层,埋深与瓦斯含量关系显著,埋深越大,瓦斯含量越高,反之亦然;煤的变质程度相对较高,煤层生烃动力强,有利于煤层生烃和提高瓦斯含量。  相似文献   

15.
 为了研究王庄煤矿后备区3#煤层的瓦斯赋存特征,基于瓦斯赋存对煤矿安全生产的重要性,采用了瓦斯赋存构造逐级控制理论,结合现场实测资料,研究了地质构造对瓦斯赋存的控制作用,以及顶板岩性、煤层埋深、水文地质等因素对瓦斯含量的影响,并建立了多元回归数学模型。结果表明,埋藏深度作为影响煤层瓦斯含量的主要因素;瓦斯含量随着煤层埋深的增加而增大;数学模型的预测值与实际值比较接近,能较好的反映后备区煤层影响因素的实际情况。  相似文献   

16.
马志存  龚真鹏 《煤》2013,(2):6-8,53
通过对魏家地煤矿地质构造、煤层顶底板岩性、煤的变质程度及煤岩组分、煤层厚度及结构、煤层埋藏深度等分析研究,总结了瓦斯赋存的规律,同时也对煤与瓦斯突出危险性进行了分析研究,这一成果可以对今后矿井瓦斯防治乃至煤层气的抽采利用提供技术依据。  相似文献   

17.
通过对韩城煤层气田水文地质旋回划分、构造演化和延续时间系数及含气量的综合分析,探讨了韩城煤层气田水文地质旋回对煤层气的影响。结果表明:研究区自下而上划分为4个水文地质旋回,其中第Ⅰ水文地质旋回(∈-C1)只构成气田的基底,对煤层气的生成和吸附无影响;石炭-二叠系煤系地层在第Ⅱ水文地质旋回(C2-T3)沉积;第Ⅲ水文地质旋回(J1-J3)对煤层热成熟有一定的促进作用;煤系地层在第Ⅳ水文地质旋回(K1-Q)经过了短时间高温条件下的变质作用,是煤层气生成的关键时期,历史最大含气量达到22 m 3/t。通过该区煤层等温吸附曲线的特征判断,第Ⅳ水文地质旋回渗入水文地质阶段约20 MPa煤系地层压力的降低幅度,只造成原始最大含气量18%左右的解吸气量,没有改变研究区煤层气吸附量大和资源丰富的基本特征。水文地质旋回分析方法从成因机制上说明了韩城煤层气田具有较大的资源潜力。  相似文献   

18.
卫华鹏  邓彩 《中州煤炭》2019,(12):84-87
分析了断层、褶曲、顶底板岩性、煤层埋深对矿井瓦斯赋存的影响,煤层埋深是控制瓦斯含量的主导因素,分析了矿井瓦斯地质规律,煤层瓦斯含量与瓦斯压力与煤层埋深一般呈线性相关。研究得出,位于矿井二1煤层埋深450 m处,瓦斯含量为3.89 m3/t 。计算箕山井田瓦斯风化带深度为640 m,研究区全部处于瓦斯风化带内以及埋深与瓦斯压力和瓦斯含量的关系。研究为矿井瓦斯抽放的设计提供理论依据。  相似文献   

19.
安鸿涛  孙四清 《煤矿安全》2012,43(6):102-104
为了探明二道岭矿区煤层瓦斯赋存规律,通过实测煤层瓦斯含量,以瓦斯地质理论为基础,分析了二道岭矿区煤层瓦斯赋存的控制因素。结果表明:岩浆热变质是矿区瓦斯含量普遍较大的根本原因;矿区构造和煤层埋深是控制瓦斯分布状况的直接因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号