首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
国外某金矿石金品位4.59 g/t,银含量为1.8 g/t。金矿物赋存状态较好,裸露程度较高,含有较多的颗粒金。采用重选工艺可以保证颗粒金的回收,获得金品位较高的重选精矿直接进入冶炼。在矿石性质基础上,对本矿石进行了重选—重选尾矿浸出和重选—浮选—浮选精矿浸出工艺两种工艺方案的对比试验,结果表明,重选—重选尾矿浸出的工艺方案选别效果更为理想。在磨矿细度为-0.074 mm占85.0%的条件下,重选获得的精矿金品位为865.61 g/t、金回收率为45.35%,尾矿金品位降至2.51 g/t;固定矿浆浓度40%、石灰用量4 kg/t、氰化钠用量3 kg/t、氰化时间48 h,对重选尾矿进行氰化浸出,金浸出率达到86.06%,重选—重选尾矿浸出工艺金综合回收率为92.38%。研究结果将为该矿石的工艺设计提供依据,指导实际生产。  相似文献   

2.
云南某金矿石含炭质高,金矿物主要为自然金,部分金和硫化矿物聚集程度较高,多数粒度较细小,宜采用富集后再氰化浸出工艺提金。试验研究表明,适宜的富集工艺为-200目占85%的磨矿产品摇床重选,摇尾1粗2精2扫、中矿顺序返回流程浮选,可获得金品位295.45 g/、t回收率32.65%的重砂;金品位42.07 g/、t回收率53.46%的浮选金精矿,总金回收率达86.11%。  相似文献   

3.
贵州某金矿石金品位1.40 g/t,含砷1.75%、含碳2.26%,金主要以微细粒浸染状嵌布于黄铁矿和毒砂中,脉石矿物以石英、白云母和高岭石为主。为实现该金矿资源的回收利用,分别采用浮选—重选联合流程和全泥氰化浸出流程进行试验。结果表明,原矿磨矿至-0.074 mm90%,在活化剂硫酸+硫酸铜用量1 500+300 g/t、组合捕收剂异戊基黄药+丁铵黑药用量120+60 g/t的条件下,原矿经2粗2精3扫—高品位中矿二次精选—浮选尾矿摇床重选流程选别,可获得产率6.90%、金品位15.74 g/t、回收率75.68%的综合金精矿,相比原矿全泥氰化浸出工艺仅13.82%的金浸出率,指标较优,实现了该金矿资源高效回收。  相似文献   

4.
鉴于缅甸某金矿性质及当地矿山实际情况,开展了尼尔森重选-尾矿氰化浸出试验条件研究。结果表明,当采用三段不同磨矿细度,三段尼尔森GRG重选流程,可得到金品位为292.91 g/t、回收率为59.86%的重砂精矿,以及金品位为6.45 g/t、回收率为40.14%重选尾矿,同时也节约了磨矿成本。重选尾矿氰化浸出较佳条件为磨矿细度-0.045 mm 78%、矿浆浓度40%、石灰用量1.5 kg/t、氰化钠用量4.0 kg/t、浸出20 h,金作业回收率为93.18%。采用尼尔森重选-尾矿氰化浸出联合流程,金的总回收率可达到97.26%。  相似文献   

5.
吕艳蕾  刘杰  吕良  王勋  葛文成  任慧 《金属矿山》2022,51(12):108-114
内蒙古某金矿石金品位为 2. 83 g/t,由于原有氰化浸出工艺所 产生的尾渣对环境具有较大污染,因此现 阶段寻求一种绿色清洁的选矿方法至关重要。 基于矿石中金的嵌布特征, 开展了尼尔森重选—浮选联合工艺试验研 究。 结果表明:在磨矿细度为-0. 043 mm 占 87%、重力倍数为 80 G、流 态化水量为 3 L/min 的条件下进行尼尔森重选, 可以获得金品位为 35. 44 g/t、金回收率为 55. 85%的重选金精矿和 金品位为 1. 34 g/t 的重选尾矿,对重选尾矿进行 2 粗 2 精 2 扫、中矿顺序返回的闭路浮选,可以获得金品位为 13. 80 g/ t、金回收率为 31. 38%的浮选金精矿。 矿石经尼 尔森重选—浮选联合工艺处理后,获得了金总回收率为 87. 24%、金品位为 22. 69 g/t,尾矿金品位为 0. 42 g/t 的指标。 研究结果对于选厂的无氰选金工艺推广具有重要的参考价值。  相似文献   

6.
云南某难选金矿石重-浮联合工艺选矿试验研究   总被引:1,自引:0,他引:1  
云南某金矿石含炭质高,金矿物主要为自然金,部分金和硫化矿物聚集程度较高,多数粒度较细小,宜采用富集后再氰化浸出工艺提金.试验研究表明,适宜的富集工艺为-200目占85%的磨矿产品摇床重选,摇尾1粗2精2扫、中矿顺序返回流程浮选,可获得金品位295.45 g/t、回收率32.65%的重砂;金品位42.07 g/t、回收率53.46%的浮选金精矿,总金回收率达86.11%.  相似文献   

7.
为提高国外某低品位氧化矿中金的回收率,本文采用浮选-氰化工艺流程:在原矿磨矿细度-74 μm占74.65%,pH=9.0,调整剂氧化钙用量1000g/t、活化剂硫酸铜用量200g/t、捕收剂丁铵黑药60g/t、丁基黄药用量120g/t、起泡剂松醇油用量60g/t时,采用1粗2精2扫闭路试验流程,获得金品位24.30g/t,金回收率72.17%。进一步对浮选尾矿氰化浸出,金浸出率可达92.31%。  相似文献   

8.
谢园明 《金属矿山》2018,47(1):102-106
伊朗某金矿石金品位为7.05 g/t,主要金矿物为裸露及半裸露金,主要载体矿物为黄铁矿,自然金的粒度变化范围很大,细粒明金(0.01~0.06 mm)占81.15%,微粒金占18.85%。为了确定该矿石的高效选矿工艺,进行了选矿试验研究。结果表明:①阶段磨矿、阶段选别工艺可以有效减少粗颗粒金在浮选过程中的跑尾,避免金矿物在磨矿中出现过粉碎,同时有利于不均匀细粒载金矿物单体解离。②跳汰机对-200目占65%的磨矿产品进行重选,可预先产出部分合格金精矿,充分体现了能收早收、分级分选理念。③矿石采用阶段磨矿-跳汰重选-阶段浮选工艺流程处理,可获得金品位为81.43 g/t、金回收率为45.52%的重选精矿,金品位为56.12 g/t、金回收率为44.99%的浮选精矿,综合精矿金品位为66.52 g/t,金回收率为90.51%。④金品位为0.74 g/t的重浮流程试验尾矿采用氰化浸出工艺处理,金浸出率达62.16%,最终浸出渣的金品位仅为0.28 g/t。  相似文献   

9.
为预先回收老挝某金矿石中的中粗粒金,开展了重选-重选尾矿氰化浸金实验,结果表明,在磨矿细度-0.074 mm粒级占75%、重力值为60G、重选流态化水流量3.6 L/min、给料速度500 g/min条件下,尼尔森重选获得的金精矿品位为15 812.50 g/t,回收率达到21.94%;在磨矿细度-0.074 mm粒级占90%、矿浆浓度40%、CaO用量3 000 g/t、预处理2 h、NaCN用量800 g/t、浸出时间32 h条件下对重选尾矿进行氰化浸金,金浸出率达到74.24%。两种工艺联合最终获得金总回收率96.18%。  相似文献   

10.
苏丹某金矿为低品位贫硫石英脉型金矿,研究表明金主要赋存于石英粒间,以中、粗粒级嵌布为主。开展了尼尔森重选预先抛尾-中矿氰化浸出试验研究。结果表明:当采用尼尔森选矿机和摇床进行两次分选,在二段磨矿细度-0.074 mm75%的条件下可以直接抛掉产率为76.73%,品位为0.23 g/t,回收率为7.12%的尾矿,可以有效降低生产成本。重选获得的总中矿在较佳氰化浸出工艺条件:磨矿细度-0.074 mm 90%,矿浆浓度40%,石灰用量2.5 kg/t,氰化钠用量1.2 kg/t,浸出时间28 h时,金的作业回收率为95.15%。采用尼尔森重选-氰化浸出联合流程金的总回收率可以达到90.18%。  相似文献   

11.
内蒙古某金矿含金2.83 g/t,目前采用氰化钠浸出—树脂吸附工艺提金,浸渣总氰含量高达50 mg/kg。为降低氰化物用量,使得浸渣氰化物浓度达到充填技术标准,采用尼尔森重选—重选尾矿低氰浸出工 艺对内蒙古某金矿进行提纯试验研究,重点考察重选尾矿的磨矿细度、金欣用量、氧化钙用量、液固比及浸出时间对浸出效果的影响。结果表明:①在磨矿细度为-0.043 mm占87%、分选G值为80 G、流态化水量为3 L/min、给矿浓度为50%的条件下,采用“1粗2扫”工艺流程进行尼尔森重选,金累计回收率达到55.91%,金累计品位为35.48 g/t,重选尾矿含金1.34 g/t。②对重选尾矿进行低氰浸出条件试验,确定适宜的磨矿细度 为-0.043 mm占79%,氧化钙用量为5 kg/t,金欣用量为1 200 g/t,浸出时间为36 h,液固比为1.5 mL/g,此时金浸出率为91.88%,重选—浸出工艺流程综合回收率达96.42%;在上述条件下,采用树脂吸附处理贵液, 金吸附率为86.94%,合计重选—浸出—吸附全流程的金综合回收率为91.13%,指标良好。试验最终获得的浸渣总氰浓度为0.50 mg/kg,达到尾矿充填技术标准。  相似文献   

12.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

13.
董颖博  林海 《金属矿山》2008,38(9):100-103
研究了搅拌磨湿法超细磨得金精矿(-20μm>97%)的氰化浸出工艺,探讨了影响金精矿氰化浸出的因素,并与常规滚动式球磨机湿法磨得金精矿氰化浸出指标进行对比。结果表明,通过优化氰化浸出各种因素,可大大缩短氰化浸出时间,氰化钠和碱石灰用量分别降低了1 kg/t、1.47 kg/t,金的浸出率提高了0.49个百分点,浸渣含金量降低了0.21 g/t,效果显著。  相似文献   

14.
张凛  朱一民  张淑敏 《金属矿山》2019,48(4):97-100
针对传统氰化钠浸金工艺严重污染环境的弊端,以二氰胺钠为浸金剂,对加拿大某金品位为3.39 g/t的金矿石进行浸出试验。结果表明:矿石磨细至-45 μm占75%,在700 ℃焙烧1 h后,获得的焙砂在二氰胺钠用量8 kg/t、过氧化氢用量1.2 mL、矿浆pH=11.5、液固比4 mL/g、浸出温度35 ℃、浸出时间24 h的条件下,可获得金浸出率为89.08%、浸渣金品位0.38 g/t的指标,二氰胺钠的浸金效果良好。并且该浸金体系的总氰化物含量远低于国家环保排放标准。因此,二氰胺钠作为一种高效低毒的金矿浸出剂,具有一定的应用前景。  相似文献   

15.
某低品位金矿石原矿含金1.68 g/t,砷0.43%、碳0.40%、硫3.20%,金以显微或次显微形式浸染于毒砂、黄铁矿、褐铁矿中,具有载金矿物粒度细、砷和碳含量高等特点,是典型的低品位含砷碳极难处理 金矿石,严重影响金的浮选指标。为回收利用矿石中的金,分别进行了直接全泥氰化浸出、重选、浮选三种方案对比试验研究。结果表明,直接全泥氰化浸出率仅5%,重选金精矿回收率不足10%,浮选可获得金品位 15.04 g/t、回收率77.13%的金精矿。由于浮选金精矿含砷、碳、硫有害元素均较高,浮选尾矿含金0.42 g/t,损失较高,因此试验采用焙烧预处理以脱除金精矿和尾矿中的有害元素,然后焙砂氰化浸出回收金。最终 试验采用浮选—金精矿焙烧氰化浸出—尾矿焙烧氰化浸出联合工艺,得到金总回收率70.66%的较好指标,有效地回收了矿石中的金。  相似文献   

16.
某氧化型金矿石氰化浸出试验   总被引:2,自引:0,他引:2  
某氧化型金矿石金含量高达7.76 g/t,但浮选工艺回收效果极不理想。采用分段浸出工艺对磨矿细度、氰化钠用量、浸出时间等重要工艺技术条件进行了研究,还对影响金浸出的铜离子进行了预处理研究。结果表明,浸前氨水预处理有利于削弱铜对金浸出的负面影响,在试验确定的最佳工艺技术条件下,金浸出率达到了90.11%,达到了工业生产要求。  相似文献   

17.
在对豫西某金矿石进行工艺矿物学研究的基础上,采用浮选-氰化浸出流程对该矿石进行了开发利用工艺研究。试验结果表明,采用1粗1扫3精、中矿顺序返回浮选-浮选尾矿直接氰化浸出工艺处理该矿石,获得了金品位为31.20 g/t,回收率为68.50%的金精矿;浸金贵液金回收率为22.05%,金总回收率达90.55%。  相似文献   

18.
为了给某难处理金矿石的开发提供技术依据,对其进行了详尽的选冶工艺试验研究。结果表明:采用单一浮选工艺处理该矿石,在-200目占80%的磨矿细度下,可以获得金品位为57.32 g/t、金回收率为84.00%的金精矿;采用浮选-尾矿氰化浸出工艺处理该矿石,可以先在-200目占70%的磨矿细度下获得金品位为60.09 g/t、金回收率为82.26%金精矿,然后在-200目占90%的再磨细度下获得金浸出率为10.70%的浸出液,金的总回收率达92.96%。根据试验结果,推荐采用浮选-尾矿氰化浸出工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号