首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
白云鄂博西矿低品位磁铁矿石中铁主要以磁铁矿和假象赤铁矿的形式存在。采用预选抛尾—弱磁选试验,在粗选细度为-0.074 mm占39%、磁场强度为143.31 kA/m,精选磨矿细度为-0.074 mm占95%、磁场强度为143.31 kA/m的条件下,获得了铁品位为64.50%、回收率为52.57%的精矿产品。  相似文献   

2.
四川攀西某难选钛铁矿重选精矿矿物种类多,金属矿物主要有钛铁矿、钛磁铁矿等,脉石矿物主要为钛辉石、绿泥石等。钛铁矿与脉石矿物嵌布粒度偏细,脉石矿物多含铁元素且易泥化。为实现该重选精矿的高效分选,进行了选矿试验研究。结果表明,通过阶段磨矿-弱磁除铁-浮选富集钛-强磁提质的工艺流程能够获得良好的分选指标。矿样磨细至-0.074 mm占55%,在弱磁选磁场强度为96 kA/m条件下弱磁除铁,弱磁尾矿以硫酸为pH调整剂、羧甲基纤维素钠(CMC)为抑制剂、油酸钠为捕收剂浮选钛铁矿,将浮选粗精矿筛分(-0.038 mm)后,筛上磨细至-0.074 mm占80%,与筛下产品合并脱泥后去除-0.014 mm粒级细泥,沉砂经4次精选,闭路浮选可获得钛精矿TiO2品位42.86%、回收率59.79%的浮选指标;对浮选精矿创新性地进行强磁提质分选工艺,最终获得钛精矿TiO2品位46.77%、回收率54.38%的选别指标。实现了钛资源的有效回收,可以为选厂建设提供技术支持。  相似文献   

3.
针对辽西风化壳型钒钛磁铁矿有用矿物难以回收利用的问题,进行了详细的工艺矿物学研究。矿石中金属矿物主要为磁铁矿、(钛)磁铁矿、钒磁铁矿、钛铁矿,非金属矿主要有长石、角闪石和石英。其中钛、钒主要以类质同象的形式赋存在磁铁矿中,且矿石中磁铁矿、钛铁矿及脉石矿物嵌布关系复杂,解离困难。分别采用直接磨矿-弱磁选预富集、粗粒干式预抛尾-磨矿-弱磁选预富集、粗粒湿式预抛尾-磨矿-弱磁选预富集工艺进行了预富集工艺对比试验。结果表明,粗粒湿式预抛尾-磨矿-弱磁选无论在功耗还是回收率指标方面均优于其余2种工艺。采用该工艺在磨矿细度为-0.074 mm占70%条件下,获得了V2O5含量为1.561%、回收率为60.96%,TFe品位为40.43%、回收率为24.83%的预富集精矿,可以满足后续直接酸浸提钒的工艺要求。对粗粒湿式预抛尾-磨矿-弱磁选工艺获得的精矿、尾矿进行分析检测表明,钒、钛以类质同象的形式替换磁铁矿中的铁,使预富集精矿铁品位较低,预富集精矿中磁铁矿、钛磁铁矿、脉石矿物嵌布关系复杂紧密,无法通过机械磨矿使其解离。因此,即使继续增加磨矿细度,预富集精矿全铁品位也仅能保持在40%左右,不能再继续提高。  相似文献   

4.
秉新矿业铁矿石铁品位为18.50%,磁性铁品位为15.69%,矿石中铁矿物主要为磁铁矿,为粗细不等的粒状分布,磁铁矿集合体常包裹细粒脉石矿物。为了确定该矿石的高效开发利用工艺,进行了选矿试验研究。结果表明,矿石经高压辊磨机闭路破碎至-3 mm后再经粉矿干选机预选(磁场强度318.47 kA/m、转速80 r/min)抛尾,预选精矿在磨矿细度为-0.074 mm占85%的情况下经1粗1精弱磁选(磁场强度分别为191.08 kA/m和143.31 kA/m),获得了TFe品位为66.62%、回收率为80.98%的精矿。该工艺简洁、高效,适用于该矿石的开发利用。  相似文献   

5.
采用阶段磨矿-弱磁获精-强磁抛尾-反浮选流程对某低品位微细粒嵌布赤铁矿进行了选矿工艺试验研究。结果表明:在入选原矿品位TFe 24.07%、第一段磨矿细度-0.074mm占50%、第二段磨矿细度-0.074mm占95%的条件下,可获得产率21.96%、品位65.90%、回收率60.04%的最终综合精矿。  相似文献   

6.
对印尼某磁铁矿-赤铁矿混合矿石进行了选矿试验研究。磨矿弱磁选试验结果表明,磨矿细度控制在-74μm70.67%、磁场强度159.2 kA/m,弱磁选精矿品位65.46%、回收率52.70%。采用弱磁-强磁流程,综合铁精矿的产率68.32%、品位61.61%、回收率79.04%;采用弱磁-摇床流程,综合铁精矿的产率59.63%、品位63.65%、回收率71.27%。  相似文献   

7.
针对白云鄂博混合型铁-稀土矿石生产的铁精矿和稀土精矿回收率低、杂质含量高的问题,按照矿石类型进行分类选别。以霓石型低品位铁-稀土矿石为对象,在系统研究其矿石性质的基础上进行回收铁、稀土的选矿试验。研究结果表明,原矿中TFe品位为17.50%,稀土REO品位为8.43%,主要的铁矿物为磁铁矿,氟碳铈矿和独居石是主要的稀土矿物;脉石矿物主要是霓石、重晶石和方解石等;通过磨矿-两段弱磁选-再磨-弱磁选回收铁,在一段磨矿细度-0.074mm 90%、粗选磁场强度和精选磁场强度分别为112kA/m和96kA/m、再磨细度和再磨磁场强度为-0.045 4mm 90%和96kA/m的条件下获得TFe品位65.83%、TFe回收率69.86%的铁精矿;选铁尾矿在浮选温度60℃、水玻璃用量2.1kg/t、捕收剂H205用量1.0kg/t的条件下经一次粗选、两次扫选的闭路试验可获得REO品位为50.89%,回收率为63.17%的稀土精矿。研究结果为白云鄂博矿的分类选矿提供技术借鉴。  相似文献   

8.
根据某选铁尾矿的矿石性质,在一系列流程和条件试验基础上,最终选定了"磨矿-螺旋溜槽-弱磁-强磁-磨矿-浮选"工艺,第一段磨矿粒度为-0.074 mm粒级占50.0%,第二阶段磨矿粒度为-0.074 mm粒级占70%,以螺旋溜槽选别抛弃绝大部分合格尾矿,弱磁选选出磁铁矿,强磁脱泥抛尾为浮选提供合适的选别条件,浮选除去黄铁矿及脉石矿物.试验最终钛精矿品位为46.33%,对原尾矿样品的产率为1.6%,回收率16.5%.尾矿中流失的钛主要存在于脉石矿物钛辉石中.  相似文献   

9.
为了探究通过提高磨矿细度降低河北柏泉磁选铁精矿钛含量的可行性,采用搅拌磨细磨(超细磨)-弱磁选工艺对试样进行降钛研究,在磨矿细度d90为34.7 μm,弱磁选磁场强度为83.6 kA/m的条件下,铁精矿TFe品位可由63.39%增加到65.48%,TFe品位达到一级铁精粉要求,且TFe回收率为97.85%,但铁精矿中杂质TiO2含量仅能降低1.04个百分点。通过XRD分析以及工艺矿物学分析查明,试样中钛主要存在于钛磁铁矿中;搅拌磨细磨(超细磨)-弱磁选工艺可以脱除铁精矿中的钛铁矿和钛赤铁矿,但是钛磁铁矿与磁铁矿属于类质同象,物理化学性质非常相近,难以通过磁选分离,这是该铁精矿的钛元素难以大量脱除的原因。研究结果表明,此类岩浆岩型高钛铁精矿品质较优,但钛不能通过选矿脱除,可用作其他低钛铁精粉高炉冶炼的配料。  相似文献   

10.
陈达  闫武 《矿产综合利用》2012,(1):21-23,45
简述了Windimurra钒钛磁铁矿主要金属元素的赋存、主要矿物组成及矿物含量。磁选条件试验确定了该矿的试验磁场强度(磁选粗选、扫选磁场强度为280kA/m、350kA/m)和粒度(-0.5mm),并进行了一粗一扫一精、扫选精矿同精选尾矿合并后再磁选流程的闭路试验,最终获得了产率为41.93%,TFe、TiO2、V2O5品位分别为52.14%、18.52%、1.04%,TFe、TiO2、V2O5回收率分别为72.26%、83.30%、82.43%的钒(铁)精矿,对钛磁铁矿(包括钛磁赤铁矿、钛赤铁矿和钛磁铁矿)和钛铁矿矿物的回收率分别为84.32%、84.85%,能有效地回收该资源中的铁、钛、钒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号