首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 75 毫秒
1.
注水对煤的瓦斯扩散特性影响   总被引:1,自引:0,他引:1  
为研究注水后煤的瓦斯扩散特征及动力学参数变化,在自制的高压注水搅拌解吸装置上对不同注水量煤样在0.5 MPa吸附平衡压力下的瓦斯放散过程进行了测试,测试结果表明:不同注水量煤样瓦斯解吸量与时间的关系曲线形状均与 Langmuir 吸附等温线相似,不同注水量煤样均存在极限解吸量,极限解吸量随水分增加呈现指数函数式变化,当煤样水分由0.05%增加到12.04%时,极限解吸量由7.3383 mL/g降至2.7749 mL/g。相同吸附平衡压力下,注水量越大,煤样第1 min瓦斯解吸速度(V1)越小,解吸速度V1随水分增加呈现对数函数式变化;注水后,煤样传质毕欧准数增大,扩散系数和传质傅立叶准数减小,注水改变煤的扩散动力学参数。  相似文献   

2.
水分对阳泉3号煤层瓦斯解吸速度影响的实验研究   总被引:1,自引:0,他引:1  
通过对阳泉无烟煤注水及其瓦斯解吸过程的实验室模拟测试,分析了在一定吸附平衡压力条件下,不同水分含量对煤样的瓦斯量的影响,并在此基础上得出了水分对瓦斯解吸速度的影响系数,为煤层注水以及估算落煤后瓦斯涌出量提供一定的理论依据。  相似文献   

3.
深部开采易形成地应力与瓦斯的耦合作用,出现地应力主导型的煤与瓦斯突出事故。为了提高矿井瓦斯灾害防治的精准性,亟需深入了解地应力作用下水分介入后对含瓦斯煤解吸特性的影响。在试验室搭建了覆压作用下注水对煤样瓦斯解吸特性影响的模拟测试装置,通过向试验煤样施加覆压,同时注入水分,研究覆压-注水作用下含瓦斯煤的解吸特性。基于该试验装置,测试了古汉山矿(GHS)煤样在覆压5、10、15 MPa,水分0、2%、4%和6%,相同充气量条件下的瓦斯解吸数据。通过分析试验数据,得到覆压-注水作用对GHS煤样累计瓦斯解吸量、瓦斯解吸速度、初始瓦斯解吸速度影响系数和残存瓦斯含量的影响规律。研究结果表明:覆压作用使干燥煤样累计解吸量和初始瓦斯解吸速度增大,促进了瓦斯解吸;随着水分的介入,覆压大的煤样累计瓦斯解吸量和初始瓦斯解吸速度反而变小,说明水分抑制了瓦斯解吸,水分介入后覆压作用从促进瓦斯解吸过渡为抑制瓦斯解吸。理论分析认为,覆压的活塞效应促进干燥煤样的瓦斯解吸,随着水分的介入,水分在煤体裂隙和孔隙中产生了强烈的毛细管阻力,随着覆压增大,煤样被压碎压实,煤中孔隙尺寸变小,毛细管阻力变大,从而产生更强的抑制解吸...  相似文献   

4.
通过不同温度条件下煤与瓦斯吸附、解吸实验,研究了煤与瓦斯吸附、解吸的微观机理,重点分析了高压注水对煤体瓦斯吸附、解吸的影响规律.利用具有压力控制单元和温度控制单元的煤样吸附解吸实验系统,测定煤样在不同温度下瓦斯的解吸量,通过吸附压力降低曲线计算出了吸附速率.  相似文献   

5.
选用3种电位梯度分别对东曲矿贫煤进行电化学改性实验,对改性前后的煤样进行瓦斯吸附解吸测试,并通过低温液氮吸附测试和红外光谱测试分析改性前后煤样孔隙结构和表面基团的变化。结果表明:未改性贫煤煤样的饱和吸附量为30.030 mL/g,煤样的Langmuir压力为0.876 MPa,最终解吸率为83.204%,经1、2、4 V/cm 3种电位梯度电化学改性后,煤样的饱和吸附量分别降低为29.239、28.329、26.667 mL/g;Langmuir压力分别升高为0.932、1.042、1.048 MPa;最终解吸率分别提高84.235%、85.541%和87.840%;电位梯度越大,改性后煤样的比表面积越小,平均孔径越大,含氧官能团数量越多,故抑制瓦斯吸附、强化瓦斯解吸的效果越好。  相似文献   

6.
《煤矿安全》2016,(10):5-8
为了查明受载煤样瓦斯解吸规律,自行设计了受载煤岩恒压瓦斯吸附解吸实验装置,进行了不同轴压和瓦斯压力条件下柱状煤样瓦斯解吸实验,分析了轴压和瓦斯压力对瓦斯解吸的影响,并根据瓦斯解吸经验公式,对实验结果进行了拟合。研究结果表明:在相同轴压条件下,瓦斯压力越高,煤样瓦斯解吸量越大,解吸速率越快;在相同瓦斯压力下,轴压越高,煤样瓦斯解吸量越大,解吸速率越快;轴向受载煤样瓦斯解吸规律符合艾黎公式,式中m值能够表征煤体内部孔裂隙发育程度。随着轴压增加,微裂隙逐渐发育,m值逐渐减小。  相似文献   

7.
刘祥龙  陈绍杰 《煤矿安全》2014,(11):16-18,22
基于自制的煤体瓦斯吸附-解吸实验装置,实验室模拟了反转密封取样过程,开展了不同吸附平衡压力下和不同密封时间的瓦斯解吸实验。针对实验过程中的煤样瓦斯吸附平衡-卸压-密封过程,分析了煤样罐中的瓦斯压力变化。结果表明:卸压密封过程瓦斯压力逐渐增大,是一个由非平衡状态向吸附平衡状态转变的过程,理论上随着时间的延长,最终趋向于吸附平衡状态。密封取样的瓦斯解吸是非平衡状态下的瓦斯解吸过程,其初始瓦斯解吸量明显大于常规解吸的瓦斯解吸量,随着吸附平衡压力的增大和密封时间的增大,初始瓦斯解吸量越大,其解吸规律与常规解吸基本相似。  相似文献   

8.
为了进一步加快卸压抽采,针对低透气性、强吸附煤层瓦斯区域治理工作的需要,通过大量的实验室模拟和分析,研究了中马村矿强吸附煤层不同吸附平衡状态下的瓦斯解吸规律。结果表明:同一煤样平衡压力越高,吸附瓦斯量越多,在同一时间段内进行解吸时,解吸速度越快、单位时间解吸量也越多;加快煤层瓦斯解吸需要具备一定的卸压空间,缩短瓦斯运移的通道;煤样粒度越大其孔裂隙内的游离瓦斯量越多,越不利于释放。  相似文献   

9.
针对钻孔及煤岩层水对瓦斯压力测定的影响问题,从宏观影响和微观效应两方面分析了水对直接法测定煤层瓦斯压力的影响。宏观影响主要是由水的重力产生的,可以通过测试后计量钻孔中水分进行修正;微观效应通过实验室开展水对煤中瓦斯的置换实验进行分析。实验表明:水能够置换煤微孔隙中的瓦斯,使吸附态的瓦斯变为游离态瓦斯;在未饱和状态下,煤中含水率在2%~10%时,瓦斯的置换量随含水率的增大而增大,最终平衡的瓦斯压力也变大;从置换速率来看,初期置换速率迅速增加到最大,达到顶峰后进入衰减阶段,衰减趋势比较符合指数衰减规律;从卸压后的瓦斯解吸规律来看,煤样瓦斯解吸量随煤层含水率的增大而减小。考虑到现场测试时测压气室的体积、水对煤的润湿范围、煤的含水率等不确定影响因素,现场尚不能进行水对瓦斯压力影响的定量研究。  相似文献   

10.
《煤矿安全》2015,(12):4-7
为了研究高压注水后含瓦斯煤体的恒温及升温解吸规律,采用自主研制的吸附-注水-加热-解吸成套实验系统,针对不同条件下含瓦斯煤体的解吸特性,从沁水煤田古城煤矿和高河煤矿现场取样,进行了相应的实验研究,得出含瓦斯煤体在不同注水压力、不同吸附压力和不同温度条件下,其解吸特性的变化规律。实验结果表明:相同吸附压力下的未注水自然解吸,高河煤样的解吸率高于古城煤样;随着注水压力的增加,恒温条件下含瓦斯煤体的解吸率呈非线性规律衰减,当到达一定高的注水压力时,衰减会趋于稳定;升温可以有效促进注水后含瓦斯煤体的解吸,并且随着注水压力的增加,加热的促进作用越明显。  相似文献   

11.
煤层气解吸滞后特征分析   总被引:10,自引:0,他引:10       下载免费PDF全文
马东民  马薇  蔺亚兵 《煤炭学报》2012,37(11):1885-1889
通过对不同变质程度的煤进行不同温度点的等温和吸附/解吸的实验,综合分析认为,煤层气在降压解吸过程中,随着压力的降低和煤阶提高,解吸滞后特征显著,温度增大解吸滞后现象不显著。不同变质程度煤的分子构成和孔隙结构导致了煤的物性差异,这是煤层气降压解吸滞后与升温解吸滞后差异的主要原因。实践中,在煤层气井排采后期,用升温解吸技术促进残余气解吸是提高煤层气采出率的重要途径。  相似文献   

12.
为了获得常压环境下煤体瓦斯解吸释放趋向性规律,利用自主设计的瓦斯解吸参数测试系统装置,在环境温度15℃、瓦斯吸附平衡压力2.0 MPa条件下,开展了垂直、平行和斜交等不同层理面煤样的瓦斯常压解吸释放对比实验,结果表明:不同的解吸层理面对瓦斯解吸参数影响显著,斜交层理面煤样瓦斯最终累计解吸量分别是垂直层理煤样、平行层理煤样的1.2倍和1.7倍,且随着解吸时间的延长趋向性差异越明显。  相似文献   

13.
刘水文 《煤炭工程》2014,46(4):116-118
为了实时动态分析煤体的瓦斯解吸特性,基于瓦斯解吸速度幂关系式提出了一个表征煤体瓦斯解吸特性的新参数n,在现有矿井安全监测监控系统的基础上构建煤体瓦斯涌出监测系统,可实时计算n值,分析工作面前方煤体的解吸特性,并在卧龙湖煤矿进行了现场验证。结果表明,煤体瓦斯涌出监测系统可计算出掘进面每天的n值,n曲线与传统的瓦斯解吸指标K1、Δh2曲线的变化趋势正好相反,指标n能够表征煤体瓦斯的解吸特性。通过对比K1的突出危险临界值,可得到n的突出危险临界值,为煤与瓦斯突出的工作面预测提供依据。  相似文献   

14.
依托自行设计加工的含瓦斯煤瓦斯解吸规律实验系统,以煤的瓦斯解吸动力学规律为理论基础,采用模拟测试和理论分析相结合的方法,在等温等压条件下对不同粒度煤样的瓦斯解吸规律进行了模拟测定。通过对实验数据的拟合分析,得出粒度对煤的瓦斯解吸规律的影响,最后对粒度对煤的瓦斯解吸规律的影响进行了理论分析。  相似文献   

15.
采用自主研制的高压瓦斯煤岩吸附-解吸测试系统,进行了型煤在不同温度条件下的吸附-解吸变形全过程试验,对型煤吸附与解吸瓦斯产生变形进行了研究。研究结果表明,型煤在不同温度条件下随时间的变形曲线具有相同的变化规律,即先后经历快速膨胀变形、缓慢膨胀至平衡变形、卸压瞬时膨胀变形、快速收缩变形、缓慢收缩至平衡变形5个阶段;型煤的吸附膨胀和解吸收缩曲线均具有朗格缪尔方程和幂函数方程特征;型煤在吸附过程中的膨胀变形具有各向异性,在解吸过程的收缩变形具有各向同性,解吸平衡的残余体应变与温度呈负相关。  相似文献   

16.
屯兰矿钻屑解吸指标敏感性研究   总被引:1,自引:0,他引:1  
为了建立和完善屯兰矿防治煤与瓦斯突出技术体系,确定屯兰矿钻屑解吸指标K1和Δh2的相对敏感性,基于高压定容吸附解吸试验和钻屑解吸指标模拟测定,研究发现屯兰矿各煤层煤样的瓦斯吸附平衡压力与瓦斯解吸量呈幂函数关系,K1和Δh2呈线性关系;屯兰矿各煤层煤样第1 min的瓦斯解吸量比第4—5 min受吸附平衡压力的控制作用更明显;通过现场实测K1和Δh2指标,并结合最小均方差法分析认为屯兰矿各煤层K1比Δh2指标敏感。因此,屯兰矿各煤层进行突出危险性预测时,应选用钻屑解吸指标K1作为主要指标(敏感指标),以Δh2作为辅助指标。  相似文献   

17.
范磊  刘操  庞泽明 《山西焦煤科技》2012,36(8):39-41,44
采用现场测定和实验室实验的方法,研究得出了瓦斯解吸量作为突出预测指标是敏感可靠的.突出煤体的瓦斯解吸量大,瓦斯解吸速率快,瓦斯解吸量和瓦斯压力之间有着密切的关系,本文提出通过研究解吸时间、瓦斯压力、瓦斯解吸量等之间的关系,来确定瓦斯解吸量的临界值的方法.  相似文献   

18.
针对定点取样过程中压风进钻的风压扰动对煤层瓦斯原始含量的影响以及停风后取样测定含量的时间,采用现场测定和实验室研究相结合的方法展开研究。压风进钻见煤后直接取煤样测定含量过程中,破碎解吸量会小于停风一段时间后的解吸量,在停止压风进钻后破碎解吸量迅速上升,2 h后上升的速度逐渐减小直至趋于恒定;井下直接解吸量的测定在压风进钻停风1.5 h后开始用取芯管取煤样为宜。为了加快进度,也可以在直接测定后采用y=24.74+0.26x(其中,y为恒定后的井下直接煤层瓦斯解吸量,x为修正时间)对井下煤层瓦斯解吸量进行修正;实验室破碎解吸量的测定在压风进钻停风后2 h取煤样测定为宜,也可以在不停风测定的基础上加上瓦斯含量为0.2 m3/t的修正量。  相似文献   

19.
构造煤煤层气解吸阶段分析及最大瞬时解吸量计算   总被引:1,自引:0,他引:1  
为了探求构造煤煤层气解吸阶段瞬时特征,选取平顶山五矿的构造煤和原生结构煤,分别在20、30、40℃下进行了甲烷等温吸附/解吸试验,以试验结果为基础构建了基于兰氏方程曲率的煤层气解吸阶段模型,并依据此模型分析了构造煤煤层气解吸阶段,探讨了构造煤煤层气最大瞬时解吸量.结果表明:随温度的逐渐升高和煤体破坏程度的增大,原生结构煤和构造煤的低效解吸阶段、缓慢解吸阶段、高效解吸阶段及敏感解吸阶段总体向低压方向偏移,启动压力、转折压力和敏感压力表现出减小趋势,相比原生结构煤,构造煤的大部分启动压力和转折压力更低,整个解吸阶段具有更明显的向低压偏移的特征;较大的兰氏体积使得高效解吸和敏感解吸阶段前移;同时,随着温度的升高,原生结构煤和构造煤的煤层气最大瞬时解吸量呈减小趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号