首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
Mg-8Gd-3Y-0.5Zr耐热镁合金的热压缩变形行为   总被引:1,自引:0,他引:1  
对Mg-8Gd-3Y-0.5Zr(质量分数, %)稀土镁合金在温度为250~450 ℃、应变速率为0.001~0.1 s-1、最大变形程度为50%的条件下, 进行了恒应变速率高温压缩模拟实验研究, 分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化, 计算了塑性变形表观激活能及相应的应力指数, 结果表明: 合金的稳态流变应力随应变速率的增大而增大, 在恒应变速率条件下, 合金的真应力水平随温度的升高而降低; 在给定的变形条件下, 计算得出的塑性变形表观激活能和应力指数分别为220 kJ/mol和5.6。根据实验分析, 合金的热加工宜在350 ℃左右进行。  相似文献   

2.
在Gleeble-1500热模拟机上对AM60镁合金在应变速率为0.0005~0.5 s-1、变形温度为250~450 ℃条件下的流变应力行为进行了研究。结果表明: AM60镁合金热压缩变形的流变应力受到变形温度和应变速率的强烈影响, 可以用Zener-Hollomon参数的双曲正弦函数形式进行描述。在本实验条件下, AM60镁合金热压缩变形时的应力指数n为7.2, 其热变形激活能Q为190 kJ/mol。  相似文献   

3.
利用Gleeble-1500热模拟试验机,在温度为360~450℃、应变速率为0.001~1 s-1变形条件下,对 SiCp/AM60B镁基复合材料的热压缩变形行为进行了研究.结果表明,SiCp/AM60B镁基复合材料流变应力随变形温度的升高而降低,随应变速率的升高而升高,且随着应变的增加,流变应力很快达到峰值,然后逐渐降低并趋于稳定.为评价 SiCp/AM60B镁基复合材料在热加工变形过程中的流变应力,结合Arrhenius方程且引入Zener-Hollomon参数,对流变应力做出相应的修正,根据修正后的流变应力再做出相应的修正,根据修正后的应力值创建SiCp/AM60B镁基复合材料流变应力高温变形本构方程模型.  相似文献   

4.
徐清波  陶友瑞  米芳 《矿冶工程》2013,33(5):124-126
采用动态热模拟技术进行高温压缩变形试验, 分析了5083铝合金的流变行为, 建立了该材料的高温流变应力模型。结果表明: 应变速率和变形温度显著影响5083铝合金流变应力, 流变应力随变形温度升高而降低, 随应变速率提高而增大, 在高应变速率下出现明显的动态软化。  相似文献   

5.
在Gleeble-1500热模拟试验机上,采用高温等温压缩法,研究了7075铝合金在250~450℃温度范围及1.0~0.001 s-1应变速率范围内压缩变形时流变应力的变化规律.结果表明,应变速率和变形温度对合金流变应力的影响很大,流变应力随应变速率的提高而增大,随变形温度的提高而降低;其流变应力值可用Zener-Hollomon参数来描述.从流变应力、应变速率和温度的相关性,得出了该合金高温变形的应力指数n,应力水平参数α,结构因子A和变形激活能Q.  相似文献   

6.
7075铝合金高温等温变形的流变应力特征   总被引:4,自引:0,他引:4  
在Gleeble—1500热模拟试验机上.采用高温等温压缩法,研究了7075铝合金在250-450℃温度范围及1.0~0.001s^-1应变速率范围内压缩变形时流变应力的变化规律.结果表明。应变速率和变形温度对合金流变应力的影响很大,流变应力随应变速率的提高而增大,随变形温度的提高而降低;其流变应力值可用Zener-Hollomon参数来描述.从流变应力、应变速率和温度的相关性,得出了该合金高温变形的应力指数n,应力水平参数α,结构因子A和变形激活能Q。  相似文献   

7.
在Gleeble-1500热模拟试验机上,采用高温等温压缩试验,研究了5A30铝合金在300~500℃温度范围及应变速率在0.001~1s-1内压缩变形的流变应力变化规律,采用数学回归及最小偏差法求出了该合金的材料常数,建立了该合金流变应力与Zener-Hollomon参数的线性关系式.结果表明,该合金为正应变速率敏感材料,流变应力随变形温度升高而降低,随应变速率升高而增大;该合金的材料常数包括变形激活能Q为160.94kJ/mol,应力水平参数α为0.0184mm2/N,应力指数n为3.314,结构因子A为3.058×109s-1;合金流变应力模型可表达为σ=54.31ln{(Z/3.058×109)1/3.314+[(Z/3.058×109)2/3.314+1]1/2}.  相似文献   

8.
采用多功能相变仪对一种新型医用β型Ti-Nb-Ta-Mo-Zr合金在变形温度900~1 000℃、应变速率10~(-2)~1 s~(-1)、变形量60%的高温塑性变形行为进行研究,得出合金在高温下流变应力随变形温度、变形速率变化的变化规律。基于Zener-Hollomon参数建立了Ti-Nb-Ta-Mo-Zr合金的流变应力双曲线正弦本构方程,得出合金的真应力-真应变曲线图,并建立以动态材料为基础的热加工图。结果表明,应变温度的升高和应变速率的降低都会使合金的流动应力降低,合金流变应力曲线还具有应力峰值和流变软化特征。同时,试验得出合金在高温变形时的加工硬化指数和热变形激活能等常数。  相似文献   

9.
通过选取典型岩样,研究了白砂岩在10-5~10-3 s-1应变率范围内的单轴压缩性能,采用3D-DIC系统观测和采集岩样表面位移云图,并分析不同应变率下岩样变形破坏特征差异。结果表明,岩样表面位移场变化反映了破坏面演化规律,剪切破坏面与位移场集中存在对应关系。全局轴向应变差异主要发生在微裂隙压密到弹性变形期间;加载初期,全局径向应变存在差异,在峰值强度时下端部区域径向位移最大,岩样上端部变形受到端部效应影响,径向向外膨胀受端面与垫片间摩擦限制;此外,下端部局部轴向应变大于上端部区域。随着加载速率增大,岩样从延性特征向脆性特征转变。加载速率较低时,岩样破坏过程中孔隙坍塌使得部分裂隙再次闭合、滑移而产生摩擦效应,从而使峰值强度附近的应力-应变曲线出现波动。白砂岩峰值强度、弹性模量、泊松比等力学参数随加载速率增大而增加。  相似文献   

10.
在Gleeble 1500D型热模拟试验机上,在应变速率为0.01~1s-1、变形温度为573~723K条件下,对AZ31合金的流变应力行为进行了研究.结果表明:AZ31镁合金在热压缩变形时,当应变速率一定时,流变应力随着变形温度的升高而减小;而当变形温度一定时,流变应力随着应变速率的增大而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下AZ31镁合金热变形应力指数n=8.34,其热变形激活能Q=196kJ/mol.  相似文献   

11.
6061铝合金高应变速率本构参数研究   总被引:4,自引:0,他引:4  
通过冲击拉伸试验, 研究了6061铝合金在自然时效态和人工时效态, 在应变速率为0.001~1 500 s-1条件下的动态拉伸力学行为。采用Johnson-Cook本构模型可以更真实地描述冲击载荷条件下6061铝合金的动态力学行为。结合试验数据, 获得了自然时效态和人工时效态6061铝合金的本构关系参数。研究表明, Johnson-Cook本构模型适用于描述金属材料从低应变率到高应变率下的动态行为, 同样也可用于准静态变形的分析。  相似文献   

12.
以固溶+自然时效态7A55铝合金为研究对象,利用热模拟试验机研究该合金在近生产条件(温度370~450℃,应变速率0.01~10 s^-1)下的流变应力行为。基于得到的流变应力数据,构建了本构方程和热加工图,并通过微观组织对热加工图进行了验证。结果表明,经自然时效预处理后的7A55铝合金在高温变形时呈现明显软化现象,流变应力随温度的增加和应变速率的降低而逐渐下降。通过计算得到热激活能为138.71 kJ/mol,最佳热变形参数为410~450℃、0.01~0.1 s^-1。7A55铝合金在热变形时存在亚动态再结晶现象。  相似文献   

13.
为了研究应变速率对β钛合金马氏体相变的影响, 采用分离式霍普金森压杆对Ti-5Al-5Mo-5V-1Cr-1Fe β钛合金进行了不同应变速率下(400~1 600 s-1)的动态变形, 采用光学显微镜、电子背散射衍射和透射电镜研究了动态变形后的微观组织。结果表明, 提高冲击功和应变速率可以提高Ti-5Al-5Mo-5V-1Cr-1Fe β钛合金的屈服强度, 当应变速率为1 600 s-1时, 屈服强度可达1 250 MPa。在动态冲击过程中, β晶粒中出现大量板条状α'马氏体, 马氏体的面积分数随应变速率的增加而增大, 说明应变速率对β钛合金的马氏体相变起着重要作用。应变速率会加速马氏体相变, 是因为随着应变速率增加, 马氏体的形核位置更多, 马氏体形成的吉布斯自由能降低。  相似文献   

14.
在室温下利用分离式霍普金森压杆对Al0.4CoCrFeNi高熵合金帽型试样进行动态加载,研究了不同应变速率下Al0.4CoCrFeNi高熵合金的绝热剪切敏感性。结果表明,动态加载前后Al0.4CoCrFeNi高熵合金的晶粒尺寸分别约为100 μm、100 nm,相差约3个数量级,动态加载后细小的晶粒尺寸使Al0.4CoCrFeNi高熵合金具有更低的绝热剪切敏感性; Al0.4CoCrFeNi高熵合金绝热剪切敏感性随应变速率增加而增加,在实验范围内,应变速率3 360 s-1时绝热剪切敏感性最高,产生了与动态加载方向成45°、宽约2 μm的绝热剪切带,此时临界应变值和单位体积绝热剪切形成能也最小。Al0.4CoCrFeNi 高熵合金在高应变率变形过程中晶粒发生明显细化。Al0.4CoCrFeNi高熵合金在动态加载下的绝热剪切归结为材料的热-黏塑性本构失稳。  相似文献   

15.
通过2618铝合金的等温压缩试验,分析了变形温度、应变速率对变形抗力及组织的影响,并由此得出了2618铝合金在等温变形中变形温度和应变速率的最佳范围,为该工艺的等温变形工艺制定提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号