首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了减小采空区渗透率分布对流场数值模拟精确程度的影响,在岩梁理论和"O"型圈理论研究的基础上,分析了采空区非均质多孔介质孔隙分布规律,建立了采空区孔隙率及渗透率三维分布数学模型;以姚桥煤矿7271综放工作面采空区注CO_2防灭火技术为研究背景,采用FLUENT数值模拟方法,分别研究了采用渗透率三维分布模型及不同固定常数渗透率时采空区气体运移规律,并进行了现场实测对比分析。研究结果表明,沿采空区深度方向,采空区的孔隙率在靠近工作面侧较大;沿工作面倾向,采空区内靠近煤柱侧的孔隙率变化较大,压实稳定区的孔隙率较小。随着渗透率的增大,工作面漏入采空区的漏风量增大,CO_2不易在采空区中聚集;当渗透率减小时,CO_2的体积分数由回风巷侧逐渐向进风巷侧升高。数值模拟采用渗透率三维分布函数得出的结果与实测数据的平均误差为8.0%,小于固定常数渗透率,可为采空区风流场数值模拟研究提供了基础参数依据。  相似文献   

2.
满天雷  王伟 《煤炭工程》2019,51(9):142-146
采空区漏风易引发遗煤自燃灾害,威胁煤矿井下安全生产。为研究和掌握采空区漏风流场分布,以梁宝寺煤矿3308工作面为研究对象,建立采空区三维模型,构建了采空区三维阻力系数分布函数,借助CFD软件对采空区漏风流场规律进行数值模拟。结果发现:工作面向采空区漏风流场的分布在各方向上具有明显的分区域特性|采空区的主要漏风发生在工作面倾向0~10m的范围内,应加强此范围的密封工作,以隔绝漏风通道|数值模拟得到的沿工作面倾向风量与现场实际测量的结果误差较小,验证了数值模拟具有一定的准确性。上述分析为减少采空区漏风,防治采空区遗煤自燃发火等灾害提供一定的理论基础。  相似文献   

3.
为准确划分浅埋深煤层群多重采空区煤自燃危险范围,从而采取有效防治措施,基于多孔介质渗流方程和氧气体积分数平衡方程,利用颗粒流离散元软件PFC建立数学模型,进行重复开采影响下裂隙通道发育规律研究。结果表明:采空区内侧20 m区域内,裂隙数量占比78%;采空区上方大孔隙率区域沿回采方向持续移动,细长特征得以保持,回采线、采空区后方及上方孔隙率较大。根据计算结果和工作面回采程序,1203工作面采空区危险范围划分为严重漏风危险区、一般漏风危险区、弱漏风危险区和难漏风危险区。  相似文献   

4.
尾巷改变采空区瓦斯流场的数值模拟研究   总被引:1,自引:0,他引:1  
为了研究尾巷配置对采空区瓦斯流场的影响,根据N1-2工作面的巷道布置情况,建立了配置尾巷的工作面与采空区数学物理模型.结合周期来压对采空区冒落物孔隙率的影响,按周期来压步距分析了孔隙率阶跃变化,合理计算了分段渗透率大小.根据气体在多孔介质中的渗流理论,将FLUENT中3种湍流模型的模拟结果与实测结果对比,选择Realizablek-ε模型对不同条件下的采空区漏风场和瓦斯体积分数场进行模拟,模拟结果与现场效果表明:均匀渗透率和分段渗透率条件下的瓦斯场分布模拟结果与实测瓦斯体积分数对比,分段渗透率的模拟结果更接近实测值;受采空区瓦斯体积分数梯度与渗透率变化的影响,尾巷配风量越大上隅角漏风量越小,尾巷步距越小临近工作面区域的瓦斯体积分数越低,综合尾巷联络巷的施工量与回风顺槽配风量,尾巷步距为50 rn,配风量为总进风的2/3时效果最佳;现场结合尾巷步距、风量分配与调节、周期来压等因素制定了综合措施,提高了尾巷利用率,有效解决了配置尾巷的综放工作面上隅角及尾巷口瓦斯波动超限问题.  相似文献   

5.
渗透率对采空区流场有重要影响,为了使采空区渗流场模拟更接近实际,总结了国内外关于采空区渗透率的分布模型,分析了采空区上覆岩层的垮落特征,并基于采动裂隙"O"形圈理论,研究了采空区孔隙率、渗透率的三维空间连续分布模型。结果表明,该分布模型能够反映采空区渗透率三维分布特征,而且在采空区内部都是连续的,有利于采空区渗流场求解。  相似文献   

6.
针对切顶留巷无煤柱开采下采空区留巷的侧帮段漏风面积大、漏风通道广等特点,以杜儿坪煤矿切顶留巷工作面Y型通风为例,运用CFD软件对留巷侧帮段堵漏风材料不同孔隙率的漏风流场、漏风量和漏风氧浓度进行数值模拟研究。研究结果表明:工作面漏向采空区方向随多孔介质孔隙变大而漏风量也变大,且漏风量随至下隅角距离增大,呈现急剧减少→抛物线上升→线性减少→在靠近留巷处又急剧增大;随着多孔介质孔隙率增大,留巷向采空区的漏风量也越大,且沿工作面走向长度的增大,留巷向采空区漏风量逐渐减少;随着孔隙率变大,漏风氧浓度也逐渐变大。  相似文献   

7.
以活鸡兔井12下206工作面为研究对象,基于采空区"O"型垮落压实和非线性渗流理论,结合采空区"竖三带"分布,建立了采空区三维渗透率分布模型,利用CFD软件Fluent对压入式通风工作面采空区漏风规律进行了数值模拟研究。结果表明:压入式通风下浅埋煤层工作面能位大于地表,使得工作面风量经采空区漏至地表,采空区内漏风流场在水平方向上近似呈"O"型分布,在垂直方向上近似呈"浴盆"状分布;从空气能位角度模拟研究了工作面与地表之间的能位差对采空区漏风的影响,研究得到工作面与地表之间的能位差越大,采空区与地表之间的漏风量也越大,并得到工作面与地表之间的能位差与漏风量呈指数函数关系。  相似文献   

8.
一进两回Y型通风采空区气体分布数值模拟   总被引:1,自引:0,他引:1  
为了掌握Y型通风采空区气体分布规律,根据现场实际建立了一进两回Y型通风采空区物理模型,运用Fluent软件对一进两回Y型通风采空区漏风流场、漏风量和瓦斯浓度分布进行数值模拟研究。结果表明:随至下隅角距离的增大,工作面向采空区的漏风量减小,在上隅角附近漏风量急剧增大;沿采空区长度方向,越靠近采空区深部瓦斯浓度越大;沿工作面方向靠近运输巷侧瓦斯浓度低,靠近沿空留巷侧瓦斯浓度高。  相似文献   

9.
针对大同矿区永定庄矿8106综采工作面采空区大量漏风的工程问题,采用数值模拟方法研究了双系煤层重叠采动岩层的运动破断形式和裂隙动态演化规律,分析了双系煤层多层采空区连通机制以及采空区煤自燃危险区域分布规律。结果表明:侏罗系煤层群采空区表现为顶板垮落、底板底鼓及煤柱附近底板剪断式破坏;石炭系3-5#煤层回采依次造成基本顶、下部关键层和上部关键层破断和垮落,上部关键层破断下沉后双系采空区发生连通并导致漏风,下部关键层破断周期为60 m;在上、下关键层之间形成的裂隙区横截面上,主要漏风通道分为动态裂隙和边缘裂隙;有外部漏风时采空区煤自燃危险区域主要分布在距工作面100~175 m之间,无外部漏风时,煤自燃危险区域相对面积减少且总体位置朝工作面方向前移约30 m。  相似文献   

10.
通过数值模拟方法对工作面支承压力及采空区应力的分布规律进行分析,得到工作面及岩层采空区应力恢复距离在覆岩内部的变化规律。依据煤层极限平衡区和弹性区的支承压力分布函数的表达式,通过载荷守恒原理对采空区应力恢复函数进行分析,得到了采动岩层采空区应力恢复函数中增长系数的变化规律。结果表明:工作面支承压力峰值位于煤壁前15 m附近,其峰值为18.5 MPa,应力集中系数为2.52,上述参数与理论计算结果误差较小,证明了数值模型计算的准确性;当岩层与煤层的垂距越大时,采空区应力恢复距离越大,且岩层采空区应力恢复距离与其和煤层的距离呈现线性增加的关系。根据采动岩层空间载荷守恒原则,采动岩层采空区应力恢复函数的形态呈现出“上凸”的形态,并且岩层与煤层垂距越大,其“上凸”的形态越明显,采空区应力恢复的过程越快。  相似文献   

11.
煤层气井产气通道内煤粉运动特征分析   总被引:10,自引:0,他引:10       下载免费PDF全文
基于脱落煤粉滚动启动条件和运移,建立了煤粉脱落、运移和堵塞的孔隙度和渗透率模型;分析了煤粉排出量对煤层孔隙度和渗透率的影响。依据该渗透率模型,研究煤粉适度排出理论,建立煤粉适度排出模型和携煤粉地层液速度窗口模型,使脱落的煤粉适度排出,疏通渗流通道,增加渗透率提高单井产气量。结果表明:煤粉的脱落增加了煤层的孔隙度和渗透率,而煤粉的沉积堵塞减少了煤层的孔隙度和渗透率;渗透率随煤粉的排出量的增加呈二次关系增大,煤层排出脱落煤粉可在一定程度上改善储层物性,提高煤储层的孔隙度和渗透率;采取压裂增产的煤层气井支撑剂粒径为20/40目正排列时,通过的最大煤粉粒径为0.16 mm,排液量大于13.53 m 3/d有利于粒径小于0.1 mm脱落的煤粉排出,最大限度地提高煤层渗透率,增加煤层气单井产气量。  相似文献   

12.
含瓦斯煤体固气耦合数学模型及数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
郭平  曹树刚  张遵国  李毅  刘延保  李勇 《煤炭学报》2012,37(Z2):330-335
基于固气耦合作用的基本理论,从孔隙率和渗透率的基本定义出发,综合考虑吸附膨胀效应和Klinkenberg 效应对煤体中瓦斯的运移影响,推导出孔隙率与渗透率的动态参数模型,并建立了含瓦斯煤体固气耦合模型。运用有限元方法给出自然卸压条件下的耦合数值解。数值模拟结果表明:孔隙瓦斯压力随着自然卸压时间的增大而减小;煤体孔隙率和渗透率随自然卸压时间的增加而增加,与现场渗透率测试规律基本相符;从煤体深处向距离工作面煤壁方向,孔隙率与渗透率缓慢增加、急速下降、急剧增加等3个阶段。  相似文献   

13.
研究使用FLUENT进行采空区数值模拟多孔介质渗透率确定方法时,引入通风阻力定律验证所建三维模型。分别从x、y、z 3个方向总结分析采空区垮落煤岩体碎胀系数,确定采空区孔隙率和渗透率三维连续分布函数。将采场空间作为一个与采空区渗透系数不同的多孔介质区域,建立更加准确的工作面—采空区连续流场数学模型。引入通风阻力特性,对比数值模拟与现场实测压差、风量验证所建阻力系数模型。以沙曲矿14204综采工作面为背景,结合现场实测参数进行数值模拟验证,结果表明该模型是可靠有效的。  相似文献   

14.
陈梦思  张浩 《中州煤炭》2018,(11):119-123,129
透镜体砂岩油藏是指由同时沉积的泥岩所包围的、完全充满着油气或部分充满油气的断续条带状砂体或透镜状砂体构成的。砂岩透镜体的成藏及其孔隙度、渗透率等的变化都与岩石的形成过程相关。针对砂岩透镜体油藏的非均质性严重、相变快等特点,采用相控建模软件,结合确定建模与随机建模的方法,建立出油藏的构造模型、沉积相模型参数分布模型。根据结果可以看出,沉积相概率分布与井沉积相基本符合,储层的三维模型垂向砂体识别精度相对较高,在与井栅状图对比修改之后总体的符合程度很高。以沉积相作为约束条件时,渗透率与孔隙度的正态变化图形与标准正态分布曲线相似程度较高;拟合出的渗透率、孔隙度及净毛比的图形与井栅状图相互对比修改后总体符合程度高,为油藏的后续开发奠定了基础。  相似文献   

15.
为了探究尾矿砂结构特征对其渗透性的影响,以尾矿砂圆柱模型为研究对象,采用FLUENT对不同实验条件下的尾矿砂圆柱渗透系数进行数值模拟,验证了数值模拟方法在求解渗透系数时的有效性。通过研究不同结构特征因素对尾矿砂圆柱渗透系数的影响,得出了渗透系数和颗粒直径、孔隙率之间的规律。在孔隙率固定不变的情况下,渗透系数和颗粒直径的平方近似呈正比关系;在颗粒直径不变的情况下,渗透系数和孔隙率的三次方成正比关系。极差分析结果显示,颗粒直径是影响渗透系数较大的因素,次因为孔隙率,且两者的影响都表现出正相关性。  相似文献   

16.
为了考虑长期抽采过程中时间效应对煤体渗透率的影响,结合平均有效应力建立了时间效应和气体解吸效应耦合作用下的深部煤体孔隙率及渗透率演化模型。运用COMSOL Multiphysics对钻孔周围瓦斯运移过程进行了定量计算,结合现场数据对是否考虑时间效应的瓦斯渗流场变化规律进行了对比分析,并对长期抽采过程中深部煤层瓦斯运移规律进行了模拟分析。结果表明:煤层渗透率随瓦斯压力的下降呈指数型上升趋势;考虑时间效应的孔隙率、渗透率模拟结果明显小于未考虑时间效应模型的结果,且随着抽采时间的增长,蠕变本构中的黏弹性元件使得煤体更为致密,深部煤层的时间效应越发明显,考虑时间效应的孔隙率、渗透率模拟结果与未考虑时间效应的结果差值逐渐增大;考虑时间效应的模拟结果与现场数据匹配度较高,更符合深部煤层孔隙率和渗透率的实际演化特征。在同一抽采时刻,随着距钻孔中心距离的减小,渗透率呈现升高的趋势,压力呈现降低的趋势,当模拟抽采时间为1 d时,临近钻孔中心处渗透率较大、瓦斯压力较小;在不同抽采时刻,当抽采时间逐渐增长时,相同位置处的渗透率逐渐增大,瓦斯压力逐渐减小,当抽采时间由1 d增至30 d时,临近钻孔中心处的渗透率增长近1. 4倍,瓦斯压力降低近3. 8倍,且模型内渗透率与瓦斯压力的演化趋于平衡状态。  相似文献   

17.
孔隙结构控制下的煤体渗透实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘永茜  侯金玲  张浪  樊少武 《煤炭学报》2016,41(Z2):434-440
煤层为典型的双重孔隙介质体,其渗透能力受孔隙和裂隙结构参数控制。通过建立描述煤体孔隙和裂隙渗透率统一数学模型,将煤体内气体渗流分为孔隙控制型、裂隙控制型和孔隙-裂隙联合控制型3类;借助6组煤样气体渗流实验数据和孔隙裂隙的测试统计,讨论了不同孔隙特征的渗透率差异原因。研究发现,孔隙和裂隙的结构参数决定了煤体的压缩系数和孔渗指数,进而决定了其渗流类型,影响煤体渗透率敏感性的关键因素是裂隙的密度和尺度,微孔中的气体分子受范德华力影响导致渗透率的应力敏感性几乎无法体现。  相似文献   

18.
渗透率与孔隙度、束缚水、饱和度的关系   总被引:1,自引:1,他引:0  
岩层的渗透率与孔隙度、束缚水、饱和度存在着一定的关系,本文通过理论计算及某油田实践总结的经验公式进行渗透率的计算,分析渗透率与孔隙度、束缚水、饱和度的关系并作出关系量图板。  相似文献   

19.
采用数字测井,建立孔隙度模型、渗透率模型和泥质含量模型,由测井直接获得了各分层有效孔隙度、渗透率、泥质含量等资料,对含矿含水层进行了更为详细的岩性划分,为地浸采铀的工艺生产、技术管理提供准确的信息资料。  相似文献   

20.
煤体内部气体流通路径主要由裂隙和孔隙构成,是典型的双重气路结构。为便于量化不同尺度气路的气体传输视渗透率,一般采用单一气路的孔隙或裂隙气路结构来建立渗透率数学模型。随着微结构表征技术的发展,对煤体内部裂隙和孔隙结构的表征更加精确,基于单一气路建立的渗透率模型显然不够精确。因此,本文将微米级气路结构简化为裂隙和孔隙两种形态,运用高精度CT技术获取孔隙、裂隙结构在总气路中的体积占比,即孔隙率、裂隙率;将参数代入渗透率统计分布模型,进而求得孔-裂隙整体视渗透率;将基于单一气路结构的孔隙视渗透率、裂隙视渗透率和双重气路结构的总视渗透率计算结果进行比较分析。结果表明:裂隙视渗透率会高估实际视渗透率,孔隙视渗透率会低估实际视渗透率,孔-裂隙双重结构视渗透率处于二者之间。从单一气路结构与双重气路结构的视渗透率计算相对偏差均值来看,基于孔隙气路的视渗透率相对偏差均值都未超过50 %,更接近于实际双重气路结构的视渗透率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号