首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为探究层状岩体的巴西劈裂各向异性,开展颗粒流数值模拟研究,定义θ角为加载方向与层理法向夹角。结果表明:板岩抗拉强度随θ的增大非线性减小,减小速率逐步放缓,θ=0°和θ=90°时分别为最大和最小值。随θ增大层面方向的裂纹数量增多,层面对板岩破坏的控制作用渐强。4类裂纹的数量分布反映了板岩拉伸和剪切破坏机制和层面对板岩破坏模式及其抗拉强度控制的渐变过程。颗粒流模拟了板岩破坏过程,裂纹从距加载点最近的层面附近萌生,在层面位置无序生成直至连通,此时达到最大载荷,之后穿越层面斜向下延伸,并继续穿越下方层面形成宏观裂纹。  相似文献   

2.
利用爆炸加载动态焦散线测试系统,采用PMMA材料加工模型试件,进行裂纹扩展规律的动焦散试验研究。结果表明:预制裂纹b端在应力波作用下起裂,扩展轨迹出现翘曲变化的现象,大体上沿水平方向扩展;裂纹b端扩展位移随倾角θ呈现增大和减小交替变化的规律,在-45°~45°内,扩展位移曲线大体上关于直线θ=0°对称,在-75°~-45°和45°~75°内,位移曲线呈现较大差别;扩展位移曲线在θ=-45°,θ=0°和θ=60°处达到峰值,分别为22,31,36 mm,在θ=±30°处达到低谷值9 mm和11 mm;应力强度因子KⅠd变化曲线和能量释放率G变化曲线具有相似的变化规律,均先达到峰值,后反复振荡变化、多次出现峰值;KⅠd值和G值与能量紧密相关,当两者的数值相对较大时,相应裂纹扩展位移较大,反之,裂纹扩展位移较小。  相似文献   

3.
孟庆彬  韩立军  浦海  文圣勇  李昊  李浩 《煤炭学报》2015,40(10):2386-2398
岩石的变形破坏过程是能量积聚与耗散的过程,岩石变形破坏是能量驱动的结果。基于不同尺寸与应变速率下的岩石单轴压缩试验,计算了不同尺寸与应变速率下岩样吸收的总能量、弹性应变能及耗散能,研究了能量积聚与耗散的演化规律,分析了在岩样变形破坏不同阶段的能量分配规律,并从能量角度分析了岩样破裂失稳的原因。研究表明:在单轴压缩试验时,岩样变形各阶段的能量特征有所差异,岩样吸收的总能量U0与耗散能Ud曲线呈非线性增加趋势,弹性应变能Ue曲线呈先增加后减小的趋势。岩样的能量与其高径比呈负相关的关系,两者呈幂函数关系;而与应变速率呈正相关,两者呈对数关系。岩石高径比越小或应变速率越大,岩石强度越高,单位体积岩样所吸收的能量也越高,造成岩样的破碎程度越大。在压密与弹性阶段,基本上将吸收的能量全部转化为弹性应变能储存于岩样内,弹性应变能是能量分配的主体。在塑性阶段,虽然弹性应变能的数值增大,但其所占比率有所下降;而耗散能比率有所增加,耗散能逐渐成为能量分配的主体。在峰后破坏阶段,弹性应变能瞬间释放,岩样吸收的能量几乎全部转化为耗散能,被裂隙面滑移摩擦而耗散掉,在峰后破坏阶段耗散能是能量分配的主体。  相似文献   

4.
含V型相交裂隙岩体的力学特性及破坏模式试验   总被引:2,自引:0,他引:2  
为深入了解V型相交裂隙岩体试件的力学特性和裂纹演化规律,采用MTS815电液伺服控制试验机对含不同夹角V型相交裂隙岩体试件进行了常规单轴压缩试验,基于试验结果,详细分析了试件的应力-应变曲线、强度与变形特性、裂纹演化与破坏模式及能量耗散特征。研究结果表明:①裂隙试件的应力-应变曲线进入裂纹萌生与扩展阶段早于完整试件,在峰前出现了明显的应力降现象,在峰后破坏阶段,完整试件表现为应力-应变曲线的快速跌落,而裂隙试件呈现台阶状多阶段性跌落,甚至缓慢水平下降,体现出明显的延性破坏特征;②裂隙试件的峰值应力、弹性模量和峰值应变均有明显减小。峰值强度和弹性模量随裂隙夹角的增加呈先增大后减小的变化趋势。轴向峰值应变主要受裂隙夹角的影响,总体随夹角的增大呈线性减小的趋势;③裂隙的存在能够完全改变岩体试件的破坏模式,随着裂隙夹角的逐渐增加,裂隙试件破坏模式的演化过程为:台阶式张拉-剪切复合破坏(30°)→张拉-八字形剪切复合破坏(60°)→台阶式平行双斜面剪切破坏(90°)。当裂隙夹角为60°时,试件的裂纹演化和破坏模式体现出对加载方向近似的结构对称性特征;④相交裂隙试件单轴压缩破坏的弹性应变能、耗散能、总能量和能量耗散率均较完整试件有大幅度的减小。裂隙试件产生的裂纹数量越多,试件表面的脱落现象越明显,耗散能和能量耗散率也越大。拉-剪复合破坏比单纯剪切破坏要消耗更多的能量。试件的破坏特征和破坏模式能很好地反映试件的能量耗散特性。  相似文献   

5.
能量是导致岩样破坏的本质因素,割理发育是煤岩的显著特征,为分析割理对煤岩加载过程能量演化特征的影响,使用RFPA软件对不同割理数量、不同割理密度及不同割理角度3类二维数值模型开展单轴压缩数值模拟试验,使用MATLAB软件计算了数值模型的分形维数用以表征割理结构复杂性,分析了割理数量、割理密度及割理角度对能量应变曲线及破坏点能量的影响,探讨了割理结构复杂性对煤岩能量演化特征的影响。研究表明:以弹性能曲线从"下凹"变为"上凸"的"拐点"为1个分界点,以应力曲线及弹性能曲线的最高点(即试样破坏位置)为另外1个分界点,可将整个加载过程可分为能量聚集、能量耗散与能量释放3个阶段;无论割理在煤岩内部的分布均匀与否,随着试样内部割理总量增多,总能量曲线及弹性能曲线随着加载过程进行而上升的速度越慢,耗散能随轴向应变增大而增大的速度相近,外力只需对试样做功较少即可使得试样破坏,岩石弹性变形所具有势能降低,但用于破坏试样内部结构、产热以及岩石发生运动所消耗的能量基本保持不变;割理角度为0°和90°两种情况下总能量和弹性能随着轴向应变增大而增大的速度最快,60°时总能量和弹性能增大速度最慢,不同割理角度情况下耗散能增大速率无显著规律;随着割理角度逐渐增大,样品总能量及弹性能均先降低后升高,呈现为近似的"U"字型,耗散能先基本保持不变,而后出现小幅增大;总能量及弹性能随着割理结构复杂性增强而减小,耗散能随割理结构复杂性的变化无显著变化;煤岩内割理角度的对其压缩过程能量存储影响最大,割理集中分布对压缩过程能量存储的影响较割理均匀分布显著。  相似文献   

6.
针对含不同倾角裂隙的板状砂岩试样开展单轴加载试验,从宏细观角度深入探索裂隙倾角对脆性岩石变形破坏特征、声发射及破裂演化规律的影响效应,揭示其破坏机制。结果表明:裂隙倾角α较小时(0°≤α≤30°),应力-应变曲线呈锯齿状;翼裂纹首先在初始裂隙中部萌生,次生拉伸裂纹扩展贯通导致试样破坏,声发射较为分散,以劈裂破坏为主;随裂隙倾角增加(30°α90°),应力跌落次数减少,峰值强度和弹性模量不断升高;翼裂纹起裂位置向初始裂隙尖端转移,起裂强度和起裂强度比逐渐增加,次生裂纹转为剪切裂纹,声发射趋于集中,破坏模式向剪切破坏过渡;裂隙倾角为90°时,应力-应变曲线光滑,初始裂隙起裂前试样瞬间破坏,声发射异常集中,以劈裂破坏为主,与完整试样基本一致。  相似文献   

7.
针对含不同倾角裂隙的板状砂岩试样开展单轴加载试验,从宏细观角度深入探索裂隙倾角对脆性岩石变形破坏特征、声发射及破裂演化规律的影响效应,揭示其破坏机制。结果表明:裂隙倾角α较小时(0°≤α≤30°),应力-应变曲线呈锯齿状;翼裂纹首先在初始裂隙中部萌生,次生拉伸裂纹扩展贯通导致试样破坏,声发射较为分散,以劈裂破坏为主;随裂隙倾角增加(30°<α<90°),应力跌落次数减少,峰值强度和弹性模量不断升高;翼裂纹起裂位置向初始裂隙尖端转移,起裂强度和起裂强度比逐渐增加,次生裂纹转为剪切裂纹,声发射趋于集中,破坏模式向剪切破坏过渡;裂隙倾角为90°时,应力-应变曲线光滑,初始裂隙起裂前试样瞬间破坏,声发射异常集中,以劈裂破坏为主,与完整试样基本一致。  相似文献   

8.
王强 《中国矿业》2021,30(10):168-174
为研究预制非贯通结构面试件各向异性及试件破坏声发射信号变化规律,对含不同倾角结构面试件进行单轴声发射实验。结果表明:完整试件比含预制结构面试件强度高,单轴抗压强度随结构面角度增加呈U型变化分布,斜45°结构面试件抗压强度达到最低值;在相同应力下,α小于45°结构面试件φ1比α大于45°结构面试件轴向应变变化大,而α小于45°结构面试件φ2比α大于45°结构面试件环向应变变化小;破坏形态分析,当0°≤α45°时,试件破坏面沿着轴向加载方向脆性破坏;当45°≤α≤60°时,试件破坏面垂直结构面方向形成脆性剪切破坏,并且试件也沿着结构面破坏,两个破坏面形成交叉模式;当60°α≤90°时,试件沿着结构面方向直接破坏;通过声发射信号监测,对试件微观声发射定位与宏观试件破坏模式对比,很好地反映岩石内部结构面和剪切面破坏模式的变化规律。  相似文献   

9.
为了揭示加载速率对废石胶结充填体变形破坏特征的影响,开展了5组加载速率下废石胶结充填体的单轴压缩试验,分析其力学特性、破坏模式和能量耗散的变化。结果表明:废石胶结充填体的峰值强度和弹性模量与加载速率分别呈正线性相关和二次函数增长关系;随着加载速率的增大,充填体试样的破坏模式由张拉劈裂破坏转向剪切破坏,且加载速率越大,破坏程度也越大;结合能量演化特征,废石胶结充填体均经历压密、线弹性、裂纹稳定扩展、裂纹加速扩展和峰后应变软化衰减5个阶段;随着加载速率的增大,废石胶结充填体总应变能和弹性应变能的涨幅越来越大,耗散能的涨幅变小,弹性应变能占比增大,峰前塑性减弱。  相似文献   

10.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号