首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
富有机质页岩中主要黏土矿物吸附甲烷特性   总被引:6,自引:0,他引:6       下载免费PDF全文
唐书恒  范二平 《煤炭学报》2014,39(8):1700-1706
为了研究富有机质页岩中黏土矿物对页岩气赋存的贡献,针对采自湘西北下古生界地层的富有机质页岩样品和购自国际黏土矿物协会的伊利石、蒙脱石、高岭石等标准黏土矿物样品,开展了不同条件下的甲烷等温吸附实验以及其他相关的测试分析。实验结果显示:在压力20MPa、温度为60℃条件下,蒙脱石的甲烷吸附量最高(4.02cm3/g),高岭石、伊利石和伊蒙混层也具有较大的吸附量(分别为3.48,3.46,3.10cm3/g),绿泥石的吸附量最小(0.88cm3/g)。黏土矿物对甲烷吸附量的大小主要受控于其有效表面积,不同种类黏土矿物内部吸附水对其甲烷分子有效吸附表面积会产生不同影响;同时对比不同温度下(30,60,90℃)伊利石的等温吸附实验结果发现,随着温度的升高甲烷吸附量呈递减的趋势;温度的升高会造成伊利石内部吸附水含量的变化,影响其对甲烷分子的束缚能力。根据等温吸附实验结果计算得到黏土矿物对两个黑色页岩样品的甲烷吸附贡献率分别为44.12%和16.74%。  相似文献   

2.
为了探究页岩储层中3种黏土矿物对CH_4的吸附机理,运用Materials Studio软件分别对3种黏土矿物进行蒙特卡洛模拟。模拟结果表明:在相同温度和压力条件下3种黏土矿物对CH_4的吸附量大小顺序是蒙脱石伊蒙混层伊利石;吸附量随埋深的増加先增大后减小,且在3 km时达到最高;3种黏土矿物的吸附热均小于42 k J/mol,对CH_4的吸附为物理吸附。  相似文献   

3.
熊健  刘向君  梁利喜 《煤炭学报》2017,42(4):959-968
利用巨正则蒙特卡罗模拟方法和分子动力学方法研究甲烷分子在4类黏土矿物(蒙脱石、高岭石、伊利石和绿泥石)中赋存微观结构和微观吸附机理,并研究不同孔径和不同压力对甲烷在4类黏土矿物中吸附行为的影响。研究结果表明:甲烷的平均等量吸附热随着孔径增大而下降,且小于42 k J/mol,证明甲烷在黏土矿物中的吸附属于物理吸附;甲烷分子受到黏土矿物孔壁面势能作用影响,在孔壁面附近区域聚集从而形成吸附层,其为吸附相,而远离孔壁区域,受到孔壁面势能较弱或未受到孔壁面势能作用影响,甲烷分子分散于孔中,其为游离相;甲烷分子在不同类型黏土矿物不同尺度的孔隙中赋存状态存在差异;黏土矿物微孔中,甲烷吸附量随着孔径增大而增大,而中孔中,甲烷吸附量随着孔径增大而减小;从微观角度来看相同孔径中,不同类型黏土矿物对甲烷近似有相同的吸附能力,但是宏观角度来看不同类型黏土矿物样品对甲烷的吸附能力差异较大,说明不同类型黏土矿物样品对甲烷吸附能力主要通过比表面积因素来影响;甲烷分子在孔中吸附气量所占比例随着压力增大或孔径增大而呈下降趋势。  相似文献   

4.
李全中  蔡永乐  胡海洋 《煤炭学报》2017,42(9):2414-2419
查明黏土矿物纳米孔隙结构特征及其对甲烷吸附的影响,对认识页岩气的赋存和运移产出具有重要意义。针对蒙脱石、伊利石和绿泥石页岩中主要黏土矿物,开展了低温液氮吸附和甲烷等温吸附实验研究。结果表明:(1)黏土矿物孔隙结构复杂,主要由纳米孔组成,孔径2~50 nm的孔隙提供了主要孔隙体积和比表面积,蒙脱石、伊利石和绿泥石中孔分别占到孔隙总体积的81.45%,71.34%和75.36%,比表面积的88.70%,87.70%和90.65%,中孔(2~50 nm)孔隙构成甲烷气体赋存的重要空间。(2)矿物主要发育平行板状的狭缝型孔隙,同时含有少量的墨水瓶形孔。(3)不同黏土矿物气体吸附能力差异明显,蒙脱石、伊利石和绿泥石最大吸附量分别为8.80,3.27和2.69cm3/g。黏土矿物对甲烷吸附主要受控于矿物的中孔比表面积,最大吸附量与矿物的中孔比表面积大小具有强烈的正相关性。  相似文献   

5.
黏土矿物是煤层中最重要的矿物质,煤层中有机质与黏土矿物复合能改善黏土矿物对甲烷的吸附能力,因而煤储层中黏土矿物对甲烷的吸附不容忽视。分别选取黏土矿物含量较高的煤层夹矸和纯黏土样品,采用X-射线衍射、红外光谱及扫描电镜表征,并进一步分析了样品中总有机碳(TOC)含量、有机质的类型和成熟度,结合孔径、孔隙体积和比表面积测定结果,探讨造成夹矸型和非煤黏土矿物甲烷吸附能力差异的主要原因,研究影响夹矸型黏土矿物吸附能力的控制因素。结果表明:夹矸型黏土矿物对甲烷的吸附能力依次为铵伊利石高岭石伊利石金云母;单纯的外表面积大小并不能完全反应出黏土矿物的甲烷吸附特性,需结合不同黏土矿物层间域等多方面因素综合考虑;有机质含量较高的夹矸型黏土矿物样品比纯黏土样品具有更多的微小孔隙,尤其是孔径小于6 nm的孔隙,对样品比表面积的增加起到了关键作用,进而也增强了其甲烷吸附能力。通过分析黏土矿物的甲烷吸附贡献率发现,黏土矿物及其有机复合体具有较强的甲烷吸附能力,在煤层夹矸中对甲烷的吸附贡献较大。  相似文献   

6.
为了研究煤系泥页岩黏土矿物对孔隙结构和甲烷吸附性能的影响,本文采用甲烷等温吸附试验、XRD实验和液氮吸附试验等方法对禹州煤田煤系泥页岩的矿物组成、孔隙结构及甲烷吸附性能进行了研究。结果表明,黏土矿物含量与比表面积和孔体积之间呈正相关关系。研究区泥页岩样品的甲烷最大吸附量介于0.2~3.39 m~3/t,平均值约为1.0m~3/t。黏土矿物对储层孔隙的影响主要发生在中孔范围;高岭石和伊/蒙混层提供了主要的孔比表面积和孔体积;高岭石对泥页岩的吸附性能具有一定的促进作用。  相似文献   

7.
页岩气超临界吸附机理分析及等温吸附模型的建立   总被引:3,自引:0,他引:3       下载免费PDF全文
盛茂  李根生  陈立强  邵尚奇  张然 《煤炭学报》2014,39(Z1):179-183
为认识页岩气吸附机理,抓住页岩气所处超临界态的特点,同时考虑页岩多尺度孔隙空间和黏土矿物与干酪根吸附能力的差异性,理论分析了页岩气超临界吸附机理,同时建立了DALangmuir等温吸附模型。分析表明:低压阶段,甲烷优先吸附在干酪根超微孔表面,以微孔充填形式吸附;高压阶段,甲烷以单分子层形式吸附在中孔和大孔表面。甲烷脱附优先发生在中孔和大孔表面,表现出"吸附滞后"现象。建立的吸附方程拟合结果的R2大于0.995。页岩气吸附方式因吸附剂吸附能力和孔径而异,吸附方式既有单分子层吸附也有微孔充填吸附。吸附滞后现象是吸附剂吸附能力差异性的集中体现。所建模型可反映黏土矿物与干酪根吸附能力的差异及不同孔径吸附状态的差异,模型参数物理意义明确,数据拟合精度较高。  相似文献   

8.
页岩中有机质与黏土矿物对甲烷吸附能力的探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
张寒  朱炎铭  夏筱红  胡琳  陈洁 《煤炭学报》2013,38(5):812-816
以南方中下扬子地区高-过成熟页岩样品为研究目标,通过低温液氮吸附、压汞实验等孔隙分析手段,以及等温吸附实验等,利用SPSS软件分析TOC含量、成熟度、黏土矿物含量对样品吸附能力的影响,得出TOC含量、成熟度Ro、黏土矿物含量对样品最大吸附量的影响系数分别为0.326,-0.061,0.028。其中TOC含量、黏土矿物含量的增加对提升样品吸附能力具有正面作用。利用X射线衍射、扫描电镜对样品成分、形貌进行分析,结果指示有机质面孔率明显高于矿物基质,与伊利石相比,伊蒙混层具有良好的多孔性与联通性。  相似文献   

9.
以川西坳陷须五段页岩为例,首先运用氮气吸附法对页岩纳米孔隙进行测定,通过等温线和DFT模型分析,对页岩的微观孔隙结构进行表征;然后通过等温吸附实验研究了页岩的甲烷吸附性能,通过解吸法测定了页岩的含气量;最后探讨了页岩微观孔隙结构发育的主要控制因素及其对页岩气成藏的意义。结果表明:川西坳陷须五段页岩孔隙结构较复杂,主要由中孔组成,主体孔径位于2~50 nm,中孔提供了主要的孔隙体积;在85 ℃条件下页岩甲烷吸附的兰氏体积为0.79~4.99 m3/t,页岩的含气量为0.50~2.44 m3/t;有机碳含量、伊/蒙间层矿物含量、脆性矿物含量以及热演化程度是控制页岩微观孔隙结构发育的主要因素;微孔和中孔对页岩气的吸附能力极强,在其内部有大量页岩气以结构化方式存在,增加了页岩气的存储量。  相似文献   

10.
选用常见的页岩黏土矿物伊利石和高岭石,开展了不同湿度平衡样品的N2吸附/脱附实验和高压CH4吸附实验,研究黏土矿物孔隙分布特征的变化,并从微观上量化评价含水饱和度,分析其对甲烷吸附的影响。研究结果表明:水分的存在主要影响黏土矿物微小孔隙的分布,高湿度条件下(RH=98%)的毛细凝聚作用导致微小孔隙(5.15 nm)在孔径分布曲线上消失及比表面积的大幅下降。同时研究表明:黏土吸水能力与微小孔隙发育程度密切相关,当RH=98%时,微孔更为发育的高岭石含水饱和度(S_w=71.43%)高于伊利石(S_w=46.15%),且在此条件下,由于小孔凝聚以及吸附特征的改变(气-固吸附转变为气-液界面吸附),样品甲烷吸附能力下降近85%。因此,干燥条件下的实验结果不能代表实际页岩储集特征。  相似文献   

11.
针对同一变质程度软/硬煤的比表面积和总孔容积相差数倍,但其对甲烷吸附量却相当这一现象,根据热力学原理及煤对甲烷吸附机理,建立了煤的孔径对甲烷吸附层厚度的方程,数值分析了吸附压力和孔径对吸附层厚度(吸附层数)的影响,同时采用软/硬煤的孔径分布拟合函数,数值计算了软/硬煤的瓦斯等温吸附曲线,并与实测结果进行了对比分析。研究结果表明:基于吸附层厚度理论,在同一吸附平衡压力下,甲烷吸附层厚度随着孔径增大呈负指数变化,即煤体对甲烷的吸附是不同分子层的集合。采用煤体中孔径与其孔体积的分段函数和煤对甲烷的吸附层厚度理论,计算得到的瓦斯吸附等温线无论是变化趋势还是定量上均与实测结果一致,误差小于6.5%。因而,吸附层厚度理论很好地揭示了软/硬煤对甲烷吸附特征。由此,只要测得煤的孔径分布特征,即可采用吸附层厚度理论对其吸附量进行计算,为预测煤层瓦斯含量提供新方法。  相似文献   

12.
南山矿深部高应力软岩矿物学特征研究   总被引:3,自引:0,他引:3  
周莉  何满潮 《金属矿山》2008,38(6):73-76
为了确定鹤岗南山矿深部高应力软岩巷道变形力学机制和支护对策,运用X-射线衍射、X-射线能谱分析与扫描电镜测试等技术手段,对巷道高应力软岩的矿物学特征进行实验研究。南山矿深部高应力软岩微裂隙发育,主要矿物成分为石英、长石和粘土矿物。长岩有淋滤蚀变现象,粘土矿物以伊/蒙混层为主,混层比较低,伊/蒙混层中蒙脱石以钠蒙脱石为主,混层中主要单晶形态呈丝发状、条片状、羽毛状及波状薄片,集合体形态呈蜂窝状、网络状、颗粒包壳状、“之”字形排列及毛发状,粒间孔隙中粘土矿物主要产出状态有桥式、分散质点式和薄膜式。  相似文献   

13.
河南省石炭-二叠系是一套海陆过渡相的含煤岩系,其中的泥页岩是潜在的页岩气层位,具有有效泥页岩单层厚度变化大、累计厚度大等特点.本文利用区内石炭-二叠系露头及钻孔岩芯资料,通过泥页岩的总有机碳含量(ωTOC)测定、干酪根镜检、镜质组反射率测定、X射线衍射分析、低温氮气吸附实验等,对页岩气的成藏地质条件和储层特征进行了研究.结果表明,河南石炭-二叠系泥页岩有机质丰度高,太原组、山西组、下石盒子组有机碳含量分别为0.95%~8.04%、0.78%~9.41%、0.20%~2.13%;干酪根类型主体为Ⅲ型,部分为Ⅱ2型;热演化程度为成熟—过成熟,利于干气的形成,区域上呈带状分布,以焦作—周口一带成熟度最高,向南、向北逐渐降低.XRD分析表明,泥页岩的黏土矿物含量为62%,脆性矿物含量为34.1%,决定了泥页岩的吸附能力较强而可压裂性较差.黏土矿物组成以伊利石/蒙脱石间层矿物(57.1%)和高岭石矿物(23.5%)为主,利于孔隙空间的形成.泥页岩孔隙率为1.0%~4.5%,渗透率为0.003~0.032mD.低温氮气吸附实验显示,泥页岩孔隙形态类型以平行板狭缝状孔和倾斜板狭缝状孔为主,介孔提供绝大部分孔隙比表面积和总孔体积.泥页岩含气性较好,含气量为1~3m3/t,具备页岩气成藏的含气性条件.综合分析认为,太原组中部硅质碎屑岩段(H1)与山西组底部(H2)泥页岩具有较好的生烃潜力,保存条件好或受区域热事件影响较低的地区是重点勘探区。  相似文献   

14.
沁水盆地煤系地层页岩储层评价及其影响因素   总被引:3,自引:0,他引:3       下载免费PDF全文
陈晶  黄文辉  陈燕萍  陆小霞 《煤炭学报》2017,42(Z1):215-224
以沁水盆地中部及南部的煤系地层的泥页岩取芯为研究对象,重点剖析了石炭系太原组及二叠系山西组两套主力产气层位,分别从烃源岩、岩石学性质、储层物性及其影响因素等方面进行分析。研究表明,沁水盆地泥页岩样品生烃潜力较好,样品总有机碳含量在厚层泥岩发育段具有较高值,有机质成熟度指标Ro在1.33%~2.17%,已达到生气窗,有机质显微组分以腐泥组为主,有机质类型均为I型干酪根;全岩分析表明,泥页岩样品脆性矿物含量较高,多数在40%以上;黏土矿物主要以伊/蒙混层矿物及高岭石为主,绿泥石及伊利石含量次之;经扫描电镜观察,泥页岩中矿物溶孔、粒间孔及微裂隙较为发育;孔隙度分布于0.7%~3.8%,略低于北美页岩,渗透率在0.002 8×10-15~0.127 3×10-15 m2,与北美页岩无太大差异;黏土矿物中高岭石及伊利石对储层物性影响较大,其中前者对孔渗发育具有建设作用,而后者含量越多对储层物性影响越不利。各项有机地球化学参数表明沁水盆地泥页岩具有较高的生烃潜力,储层孔隙度及渗透率适中,较高的脆性矿物含量有利于页岩气的后期储层压裂改造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号