首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
闫东 《江西煤炭科技》2021,(2):105-107,110
为降低工作面掘进及回采期间巷道支护难度,减少巷道后期维护成本,提高工作面回采安全性,同时为了提高矿井煤炭资源回收率,结合隆安煤矿四采区11#煤层地质情况,通过数值模拟分析和煤柱尺寸宽度理论计算相结合的方法,确定了11#煤层开采留设煤柱的合理宽度为20 m.现场应用结果表明,工作面在开采过程中,巷道围岩受采动影响产生的变形量在可控范围之内,留设煤柱也处于较为稳定状态,达到了设计要求.  相似文献   

2.
活鸡兔井极近距离煤层煤柱下双巷布置研究   总被引:4,自引:0,他引:4  
针对大柳塔煤矿活鸡兔井极近距离煤层同采工作面回采巷道的合理布置问题,采用数值模拟及现场实测方法,就层间距小于2 m极近距离煤层煤柱下的双巷布置进行了研究。结果表明:当区段煤柱宽度为20 m时,煤柱下双巷布置适用的埋深应小于100 m;当区段煤柱宽度为35 m时,煤柱下双巷布置适用的埋深应小于150 m。据此,将活鸡兔井三盘区极近距离煤层双巷布置于35 m宽的区段煤柱下,实际使用后巷道历经3次采动影响的累积变形量仅为50 mm,巷道无需维护即能保持正常安全使用,为类似浅埋极近距离煤层的安全高效开采提供参考。  相似文献   

3.
为了保证煤矿安全生产并提高采出率,采用了小煤柱留巷技术,而煤柱的留设宽度影响到巷道的质量。采用摩尔—库仑模型对岩层、煤层进行模拟,通过合理简化模型,应用FLAC软件对留设5,8,10,25,35 m煤柱宽度时巷道围岩的应力分布进行了模拟。经比较分析,认为煤柱宽度为8 m时较为合适。该结论为合理确定留巷煤柱宽度提供了依据。  相似文献   

4.
本文以河北某矿6#煤实际开采情况为背景,通过采用FLAC~(3D)数值模拟方法对留设不同宽度区段煤柱时,煤柱内应力和位移分布、煤柱宽度与巷道围岩稳定性进行了分析,得出了工作面间需留设合理煤柱宽度范围,在此基础上,结合矿井实际情况,确定采用留设6m区段煤柱方案,并进行了工业性试验。通过观测发现随着工作面的不断回采,巷道围岩先后经历无采动影响阶段、采动影响阶段以及采动影响剧烈三个阶段,巷道围岩处于可控范围之内,满足生产要求,这与按经验需留设15m区段煤柱相比,减少了煤炭损失,提高了采出率,同时本文的研究对类似条件下区段护巷煤柱的留设具有指导和借鉴意义。  相似文献   

5.
巷道围岩应力分布和围岩结构的完整性对大采高综采工作面区段煤柱宽度留设有着重要影响。以山西马堡煤业15#煤为研究背景,通过现场实测、实验分析、数值模拟等手段,分析煤柱应力环境、不同宽度煤柱应力变化规律及临空巷道围岩稳定性,并对合理区段煤柱宽度进行研究。研究结果表明:区段煤柱7.0 m深度为应力峰值区域,回采巷道侧煤柱塑性区宽度在5.0~6.0 m;大采高综采工作面合理区段煤柱留设宽度为19 m。  相似文献   

6.
《煤》2015,(4)
条带作为一种特殊开采方式,在对压煤进行回收作业的矿区常被使用,但是其煤柱的宽度与回采宽度的留设对地面有直接影响,一直是研究重点。文章以某矿近距离两煤层为研究对象,对上覆煤层条采煤柱宽度的留设进行UDEC数值模拟研究,确定煤柱宽度的留设在垂直方向上的应力影响,从而确定煤柱的留设是否合理,结果表明,结合该矿现场地质条件,确定采40 m,留设30 m煤柱比较合理。  相似文献   

7.
陆军 《现代矿业》2019,35(4):70-73
为优化煤柱留设宽度,提高采区煤炭采出率,确保工作面的回采推进速度,结合薛虎沟煤矿2-106工作面实际开采条件,运用理论分析与数值模拟相结合的方法对2-106B工作面停采护巷煤柱尺寸进行研究,通过对护巷煤柱进行极限平衡计算,确定留设合理煤柱尺寸应不小于20.32 m;通过FLAC3D数值模拟分析保护煤柱宽度为25,22,20,15,10 m条件下巷道围岩变形情况,得出留设保护煤柱宽度为22 m时,煤柱内集中垂直应力逐渐向稳定非对称拱形分布形态过渡,煤柱两侧产生一定剪破坏和拉破坏,但煤柱中部未破坏区域范围扩大,煤柱稳定性较好;煤柱留设宽度为22 m时,对2-106B工作面液压支架拆除的时间段护巷煤柱应力进行监测,结果表明,巷道围岩得到有效维护,并处于稳定状态。  相似文献   

8.
何沐 《采矿技术》2021,21(1):55-57,69
以某矿井近距离煤层开采为工程实例,建立FLAC3D数值模型,分别模拟:当煤柱宽度一定时,巷道变形与巷道布置错距之间的关系;当巷道布置的错距不变时,留设的区段煤柱的宽度对本煤层回采巷道变形的影响。模拟结果得出了当煤柱宽度为15 m时,巷道顶底板移近量在错距为4 m时达到最大;综合考虑巷道维护与资源采出率,最佳的巷道布置错距为6 m~8 m;当巷道布置错距为6 m时,巷道变形随着煤柱宽度的增加而减小,根据煤柱内的垂直应力分布得出煤柱的留设宽度不应小于16 m。  相似文献   

9.
为减小护巷煤柱宽度,提高盘区采出率,在分析受采动影响的203工作面回采巷道矿压显现特征的基础上,针对浅埋深巷道矿压显现不明显的实际情况,通过理论计算,得出隆德矿2~#煤层合理的护巷煤柱宽度为8.3~12.2 m;采用FLAC3D数值模拟分析了护巷煤柱宽度为8 m、10 m、12 m、16 m时的巷道围岩变形和塑性区分布规律。分析结果表明,随着煤柱宽度的增加,巷道围岩变形量减小,煤柱更加稳定,但当煤柱宽度超过12 m时,加大煤柱宽度对维护巷道的稳定作用并不明显,最终确定护巷煤柱宽度为12 m。现场实践表明,煤柱留设宽度减至8 m后,仍可满足下一工作面安全开采要求。  相似文献   

10.
《煤炭技术》2016,(7):21-23
根据赵家寨煤矿11208工作面特定地质条件,通过煤柱强度经验计算公式计算出合理煤柱宽度留设尺寸,运用有限差分方法(数值模拟),研究分析了留设不同煤柱尺寸时相应的应力分布和围岩破坏状态。提出将本工作面的超前采动影响作为影响煤柱宽度的一个重要因素。结合现场实际情况,与理论计算结果相比较,综合分析得出窄煤柱宽度取5 m时,巷道稳定性较好,并能保证工作面采出率;为矿井下一步煤层开采区段煤柱尺寸合理留设提供了依据,对于提高回采率具有一定借鉴意义。  相似文献   

11.
 在现有煤柱宽度理论计算公式的基础上,针对大倾角煤层围岩应力特点,综合考虑煤层倾角、顶板垮落对采空区充填以及在采动时对煤体引起的损伤等多方面影响,推导出大倾角煤层区段煤柱合理留设宽度理论计算公式,并应用于胜利煤矿,取得了良好的技术与经济效果,该研究对确定大倾角煤层区段煤柱合理留设宽度具有参考作用。  相似文献   

12.
针对开滦林西煤矿井田东部地面建筑物下大量压煤的现状,进行了建筑物下大采深(九东、十东)坚硬顶板煤层条带开采技术研究.为提高采出率,利用煤层采深大、非充分采动、顶板坚硬的特点,确定了合理的采留宽度,并对条带留设煤柱进行了二次开采.通过改变回采工艺和有序协调开采,对坚硬顶板实行浅孔强制放顶,达到了地表变形小,地面建筑物不损坏、不搬迁、不维修以及工作面安全开采的目的.  相似文献   

13.
保护层卸压开采两煤层终采线合理位置确定   总被引:2,自引:0,他引:2  
为了研究保护层开采过程中围岩应力分布演化及其对前方底板巷的动态影响规律,基于采动支承压力在煤层前方及底板内的演化规律,运用FLAC^2D模拟分析了淮南矿区11煤作为13煤下保护层开采过程中在不同煤柱宽度下的采场围岩应力分布特点,并进行了巷道围岩变形监测。结果表明:下保护层开采过程中,留110m煤柱可以减弱采动对前方底板巷道的影响,当开采上方解放层时,应避免两煤层终采线留设在同一位置,错距为30—50m,可以减少采动应力叠加影响。  相似文献   

14.
近距离下煤层综采工作面侧向支承压力分布研究   总被引:3,自引:0,他引:3  
为确定木瓜煤矿近距离下煤层综采工作面区段煤柱的合理宽度,基于矿山压力与岩层控制理论,建立了侧向岩层断裂的三角块结构力学模型,计算出基本顶沿工作面推进方向断裂长度和沿侧向断裂跨度均为11郾 9 m,三角块结构在煤体中的断裂位置为11郾 5 m;同时应用数值模拟的方法,建立采场三维力学模型,得出随采场推进巷道侧向支承压力峰值为20 MPa、应力集中系数最大为2郾 55、塑性区范围为10 m左右。经现场检验,区段煤柱的合理宽度为16 ~18 m时,回采巷道受综采工作面采动影响较小  相似文献   

15.
综放工作面区段煤柱合理宽度优化研究   总被引:1,自引:0,他引:1  
为了合理确定兑镇煤矿工作面区段间的煤柱宽度,在保证巷道支护稳定前提条件下,减小煤柱宽度,提高煤炭采出率,通过对现场采集的煤层及顶底板煤岩样进行了煤岩体的物理力学参数测试,采用FLAC3D数值分析软件,建立了工作面回采过程中不同宽度区段煤柱的力学模型,对比分析了3种不同煤柱宽度时围岩应力、变形及塑性区分布规律的差异。结果表明:16 m宽的煤柱可以较好地减小工作面推进过程中煤体的应力集中程度、塑性区范围及侧向位移,减少煤柱宽度,最终确定了区段煤柱合理的宽度为16 m,工作面实现安全回采。  相似文献   

16.
沿空掘巷窄煤柱合理宽度确定   总被引:7,自引:7,他引:0  
针对202综放面地质条件,运用理论计算和数值模拟分析的方法初步确定窄煤柱合理宽度为5 m,通过现场矿压实测分析表明,煤柱宽度为5m是合理的,为天池煤矿综放沿空掘巷窄煤柱宽度合理留设提供了可靠依据,并为类似条件下窄煤柱合理宽度留设提供了借鉴。  相似文献   

17.
采空区下薄煤层螺旋钻机采煤技术   总被引:3,自引:0,他引:3  
大安山矿 680 m水平轴9槽煤为缓倾斜近距离薄煤层开采.在开采9下槽煤层时,设计采用螺旋钻机采煤方法及其钻采的工艺技术参数,用FLAC软件对钻孔间不同煤柱宽度的煤柱应力和变形情况进行了数值模拟研究,得出了合理的煤柱宽度值.设计了劳动组织形式及工作面主要技术经济指标,指导井下的生产实践.  相似文献   

18.
为解决下沟煤矿泾河区域地表泾河和巨厚白垩系砂砾岩含水层双重水体威胁下安全采煤的问题,通过采用统计分析、经验类比的方法,研究了泾河区域覆岩结构特征、覆岩破坏高度及防水安全煤岩柱留设宽度。研究结果表明:下沟煤矿覆岩类型为中硬偏软弱类型,泾河区域选择16倍的裂高采高比预计导水裂缝带的高度,保护层厚度按3倍综放开采高度选取是适宜的。得出防水安全煤岩柱厚度按照19倍采高进行留设,大部分区域能够满足留设防水安全煤岩柱的条件,通过设计合理的开采高度,可以满足泾河区域水体下综放开采。  相似文献   

19.
汪锋  许家林  谢建林  郭杰凯  刘栋林 《煤炭学报》2013,38(11):1917-1922
针对平顶山一矿31010工作面回采期间顶板丁戊三乘人巷严重变形的问题,通过现场实测和数值模拟研究了巷道变形的原因及保护煤柱留设的问题。结果表明:工作面回采后,上覆顶板岩层中的应力发生改变,将应力值等于1.05倍原岩应力的点构成的曲线定义为采动应力边界线。采动应力边界线由开采煤层向上覆岩层呈外扩式发展,采动应力边界线距开采边界的水平距离随着距开采煤层高度的增大而逐渐增大,但增大趋势逐渐减小。采动应力边界线内侧岩层应力出现增压区和减压区,而外侧岩层仍处于原岩应力状态,采动应力边界线是划定工作面上覆岩层是否受工作面回采影响的边界线。目前顶板巷道保护煤柱宽度是按岩层移动角进行设计的,没有体现内部岩层移动变形及应力特征,导致顶板巷道保护煤柱宽度不合理而出现破坏,为此提出了基于采动应力边界线的顶板巷道保护煤柱宽度设计方法。按照此方法设计的平顶山一矿31010工作面顶板乘人巷保护煤柱宽度应为158 m。  相似文献   

20.
刘爱卿 《中州煤炭》2018,(5):175-179
针对近距离煤层中上部煤层开采容易引起下部煤层应力环境复杂化而导致巷道难以维护的问题,采用数值计算的方式分析了近距离煤层的煤柱宽度、埋深、层间距等因素对下部煤层应力分布的影响。研究得出:随着煤柱宽度增加,上部煤柱底板附近应力呈降低趋势,但应力衰减速度和下部煤层应力增高区范围呈增加趋势;随着埋深增加,上部煤柱底板岩层应力和传递深度呈现增加态势,但下部煤层应力增高区扩散范围逐渐减小;层间距的变化对于上部煤柱底板岩层的应力传递影响较小,但下部煤层应力增高区扩散范围增大,且增加幅度高;当采空区顶板能够及时垮落时,工作面长度变化对于上部煤柱底板附近岩层应力分布影响并不明显,但使得采空区下方低应力区范围扩大,有利于下部煤层巷道布置位置选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号