首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
1.0 m极近距离煤层联合开采矿压规律   总被引:21,自引:0,他引:21       下载免费PDF全文
孙春东  杨本生  刘超 《煤炭学报》2011,36(9):1423-1428
针对阳邑煤矿1.0 m极近距离煤层联合开采条件,应用常规错距理论和岩层移动理论,研究了上部工作面采空区走向形成的稳压区和减压区范围,论证得出了1.0 m极近距离煤层联合开采下部工作面仅能布置于稳压区,并给出了上、下煤层工作面联合开采最佳走向错距范围为21~26 m。研究发现,在稳压区域回采的下部工作面采场覆岩形成了“双结构顶板”。矿压观测结果证明:在最佳错距范围内开采,上部工作面采空区形成的残余支压高应力区与下部工作面的超前支压高应力区之间,在推采方向存在2~3 m近原岩应力安全距离,避免了上、下高应力区域叠加,保证了下部工作面在稳压区域内回采,现场实施错距20~25 m,与理论分析接近。阳邑煤矿1.0 m极近距离煤层联合开采成功实施,在理论和技术上为类似条件的煤层提供了可靠的矿压数据和开采经验。  相似文献   

2.
为保障近距离采空区下特厚煤层安全开采,以西部某矿实际开采条件为工程背景,采用数值模拟和现场实践的方法,分析了近距离煤层综放工作面覆岩空间结构的稳定性,并据此对巷道布置进行了优化。研究结果表明:3-5号特厚煤层综放工作面回采可导致上覆50 m厚的覆岩关键层破断,致使工作面发生大面积来压;为有效避开近距离上煤层遗留区段煤柱集中应力的影响,下煤层工作面回采巷道需内错布置。现场实践证明,内错35.4 m时,动压显现明显减少,可以保证矿井安全开采。  相似文献   

3.
杨国枢  王建树 《煤炭学报》2018,43(Z2):353-358
近距离煤层下部煤层开采受上部遗留煤柱影响较大,易出现应力集中、矿压显现剧烈等情况,严重威胁矿井的正常生产。本文采用数值模拟、理论分析及现场实测等方法,对极近距离煤层群二次开采时顶板结构特征、活动规律及矿压显现规律进行了研究。结果表明:下部煤层开采导致直接顶向更高更远处发展,并涵盖了上部煤层采后的直接顶及基本顶范围,形成了典型“垮落带累加”的采场覆岩结构;上部煤层开采对下部煤层起到了一定的卸压保护作用,下部煤层工作面超前支承压力峰值及影响范围减小;但上部顶板垮落压实及遗留煤柱也造成了下部煤层局部区域动压显现,对工作面回采产生不利影响。研究成果为提高资源采出率、保证生产安全提供了科学依据。  相似文献   

4.
为研究房柱采空区遗留煤柱对下部近距离煤层开采的影响规律,掌握该条件下工作面回采的矿压显现特征,采用数值模拟和力学分析方法,研究了大地精煤矿房柱采空区煤柱集中应力的影响深度以及下部煤层开采顶板的破断规律。结果表明:房柱采空区底板岩层应力随煤柱的分布呈周期性变化,3#煤层开采老顶活动受上部煤柱应力集中的影响,从而破断岩块,易发生滑落失稳,严重威胁了下部煤层的安全开采。  相似文献   

5.
近距离煤层采空区下工作面矿压显现规律研究   总被引:6,自引:1,他引:5  
针对近距离煤层采空区下开采采场矿压控制问题,根据某煤矿地质条件及工作面布置方式,采用物理相似模拟与现场实测相结合的研究方法,总结了近距离煤层上煤层开采完毕后,采空区下工作面回采过程中矿压显现规律,进一步分析了采空区下采场覆岩运动规律;由于上煤层开采造成上覆岩层垮落,老顶岩层完整性受到破坏,采空区下煤层开采时,工作面采场覆岩构成"块体-散体-块体"的复合老顶结构,从而使工作面开采过程中形成"小-大初次来压及周期来压"的矿压显现规律.  相似文献   

6.
在我国,近距离煤层赋存和开采所占比重很大,吕梁矿区木瓜煤矿层间距小于10 m的可采储量占总储量的80%,上煤层已采完,回采工作面间遗留20 m区段煤柱,对下部煤层回采造成一定影响,所以,研究近距离下煤层过遗留煤柱应力集中区具有重要的现实意义。针对木瓜煤矿近距离上煤层采空区、遗留煤柱下巷道维护和矿压显现严重的技术难题,基于近距离煤层上部煤层开采遗留煤柱应力集中会在底板中传递的规律,对下煤层应力影响范围进行了理论计算;并结合10-103工作面的生产技术条件,采用现场矿压监测方法,对工作面上部、中部、下部位置的液压支架监测数据进行分析,采取工作面调斜和加强超前支护措施,对近距离下部煤层过遗留煤柱应力集中区具有一定的指导意义。  相似文献   

7.
以湘桥煤矿10~#煤层开采为工程背景,对上覆采空区的底板破坏情况以及下伏煤层开采的顶板变形进行了理论分析,采用UDEC数值模拟软件对比分析了单一煤层开采与近距离采空区下煤层开采的矿压显现规律。结果表明:相较于单一煤层开采,近距离采空区下煤层开采支承压力应力集中程度更高,其超前支承压力强度更大;同时,由于近距离采空区下煤层开采属于重复采动,下煤层顶板岩层破坏较单一煤层开采更为严重,采场支护强度设计必须考虑上部采空区的影响。因此,在进行近距离采空区下煤层开采时必须采取加强下伏煤层开采超前支护、提高采场液压支架支护强度等措施,以保证近距离采空区下煤层开采顶板的有效管理和安全回采。  相似文献   

8.
煤层群下部煤层开采,上部工作面与下部工作面双重扰动作用会加剧覆岩运移,覆岩原、次生裂隙发育演化形成导水裂隙,顶板、采空区水会极大地制约下部工作面安全、高效开采。为解决此类工作面开采难题,采用相似材料实验、理论分析法,对慈林山矿煤层群下部煤体开采时覆岩运移规律等进行研究。研究结果表明:慈林山矿煤层群下部工作面初次来压步距为55m,平均周期来压步距18.7 m,岩体垮落角在煤壁侧大于切眼处,下部煤体开采会扰动上部工作面煤柱,破断裂隙会贯通上部工作面采空区,且在上部壁式工作面一侧不易闭合,进而演变为导水裂隙,使下部工作面遭受岩体冲击、采空区水威胁,覆岩运移量由下至上具有降低—升高—降低演变特性,上部工作面覆岩沉降量整体较下部工作面大。  相似文献   

9.
以大同矿区双系煤层开采为研究背景,基于高精度微地震监测技术,研究石炭系特厚煤层8104综放工作面开采过程中上部侏罗系煤层群复杂采空区影响下微震事件时空演化特征,得到双系煤层影响下覆岩运动与矿压显现的关系。结果表明:8104工作面接近和进入上部侏罗系煤层采空区对应区域,8104工作面覆岩运动加剧,侏罗系煤层的开采是工作面覆岩运动加剧的主要原因;侏罗系煤柱重叠区域微震事件密集分布,在工作面的开采扰动和重叠煤柱应力传递的共同作用下,微震总能量和能量大于10~5J的震动次数均处于较高数值,覆岩运动更加剧烈。临近采空区对8104工作面的强烈覆岩运动起到了关键作用,在临近采空区和侏罗系覆岩共同作用下,工作面超前微震事件集中,矿压显现剧烈。工作面开采扰动、临近采空区覆岩运动和侏罗系重叠煤柱的耦合作用,是石炭系综放工作面矿压显现剧烈的根本原因。  相似文献   

10.
黄伟 《煤》2020,29(1):9-11,18
为了掌握碾沟煤业近距离煤层采空区下2101工作面覆岩运动及矿压显现规律,采用数值模拟和矿压观测的方法对工作面回采过程中覆岩的运动规律和矿压特征进行分析。结果表明:2101工作面回采过程中,来压受到本煤层基本顶的破断结构和上部03号煤层基本顶铰接结构的影响,覆岩无明显的周期来压现象,液压支架能够满足使用要求。  相似文献   

11.
针对蹬空状态下煤层底板岩层完整性与承载力影响制约工作面安全高效开采的问题.以草垛沟矿8201综采工作面为研究背景,通过对8-2煤层下伏11煤巷柱式采空区顶板岩层结构与受载进行分析,建立基于弹性地基假定的顶板-煤柱系统力学模型,推导并解析了顶板岩梁弯曲下沉挠度函数;将工作面底板视为半无限平面体,建立工作面走向不同区段静载...  相似文献   

12.
周建军 《中州煤炭》2019,(7):162-164,170
为了研究矿井开采对煤层顶底板的影响,采用理论分析的方法,分析了矿井开采对煤层顶板的影响、矿井开采对煤层底板的影响,首先研究了矿井开采对顶板影响范围、计算了首采层开采对上覆岩层的塌陷范围;然后,研究了矿井开采对底板破坏范围,以新田煤矿4号煤层工作面为例,研究得出:采空区对上覆岩层影响形成的塌陷盆地最大边缘为采空区外9.748 m;1401工作面回采对底板最大破坏深度71 m。研究为类似工程条件的开采对煤层顶底板影响范围提供理论依据。  相似文献   

13.
采空区下近距离煤层开采时,下层煤回采巷道将受到上煤层采空区遗留煤柱、本煤层相邻工作面动压的影响,针对孙家沟煤矿特厚煤层放顶煤工作面13311回风巷严重的冒顶、两帮内挤和底臌等变形破坏现象,采用现场实测、理论分析及数值模拟等研究方法,探讨了回采巷道失稳机理及主要影响因素。研究表明,13311回风巷变形失稳主要影响因素为迎邻近工作面回采动压掘进、巷道布置方式和巷道支护参数不合理。与上层煤回采巷道垂直布置、巷道支护强度低且迎采动掘进时,下层煤回采巷道容易失稳。为改善13313回风巷围岩稳定性,有效控制巷道变形,根据试验巷道围岩物理力学性质及受力特征,研究提出了有针对性的解决方案:首先改进巷道布置方式,将下煤层回采巷道布置在采空区下,且应距离上煤层采空区遗留煤柱不小于20 m;其次增大护巷煤柱宽度,把区段护巷煤柱宽度增加到20 m以上,减少迎采动掘进动压的影响;最后,采用高预应力全锚索加强支护,提高锚杆锚固段的整体性及其承载能力。据此,在13313回风巷进行了工业性试验并进行了巷道矿压观测,结果表明:经受相邻13311工作面回采动压影响后,区段煤柱整体完整,具有良好的承载性能;锚索受力达到了250~300 kN,约为其破断力的50%,锚索受力增长平稳,较好地控制了巷道离层和围岩变形;13313回风巷顶底板移近量为400 mm左右,两帮移近量为300 mm左右,巷道围岩变形量得到了有效控制,保证了巷道的整体稳定性,取得了良好的支护效果。但是,采用该种巷道布置方式,下层13号煤层13313工作面回采时,因工作面上方11号煤层区段煤柱集中应力的影响,对其顶板和煤壁管理提出了更高的要求,需引起高度重视。  相似文献   

14.
特厚煤层综放沿空掘巷围岩控制机理及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对特厚煤层(达15 m)综放沿空掘巷采动影响范围大、围岩性质裂隙以及煤柱稳定性差等特点,提出了顶板以高强高预应力让压锚杆支护系统、梯级锚固的束锚索支护系统以及多锚索-钢带桁架支护系统的强力联合控制技术,煤柱帮采用强力锚杆支护系统、高韧性材料注浆加固、钢筋混凝土墙支撑系统的刚柔协同控制技术,以及实体煤帮强力锚杆索支护系统进行特厚煤层综放沿空掘巷围岩稳定性的控制,并阐明其支护机理。结合地质生产条件与现场工程实践确定了沿空掘巷具体支护方案与工艺流程,并进行了现场应用。现场实践表明,巷道两帮和顶底板最大移近量分别为65和57 mm,变形量较小,首次实现了15 m特厚煤层综放沿空掘巷围岩的有效控制。  相似文献   

15.
以30515工作面为研究对象,对回风巷受上部2煤遗留区段煤柱影响,煤炮发生较频繁,局部区域巷帮破坏及水平位移明显的现象进行分析,采用FLAC3D模拟工作面上部实体煤和上部集中煤柱条件下支承压力分布。通过模拟可知,受上部集中煤柱的影响,工作面超前应力最大值为35MPa,超前工作面约28 m,小于不开挖上部2煤特厚煤层综放工作面两侧为实体煤条件下的42 m。  相似文献   

16.
针对缓倾斜厚煤层回采巷道受采动影响大变形问题,选取枣泉煤矿140204工作面13、14采区胶带大巷为研究对象,研究了缓倾斜厚煤层回采巷道顶板水力压裂卸压技术。现场调查研究了二煤层临近工作面运输巷变形破坏特征与原因,分析了二煤层140204运输巷工程地质条件,并设计了回采巷道顶板水力压裂卸压对13、14采区胶带大巷护巷方案,提出了“顶板水力压裂卸压”回采巷道围岩控制稳定方法并付诸于实践,工程实践证明卸压效果良好,巷道围岩保持正常使用。  相似文献   

17.
放顶煤开采是为解决特厚煤层高产与高效开采的新型方法,是我国特厚煤层开采的发展方向,但特厚 煤层综放开采顶煤堵塞放煤通道的技术难题影响了煤炭的回收率。 本项目结合塔山煤矿 3-5#煤层的实际赋存条件, 采用三维洞穴激光扫描仪和运用现场实测以及数值模拟等科学方法对其顶煤运移规律及采空区顶垮落形态等进行 了系统的研究。 研究结果表明:工作面在推进过程中,顶煤位移量发生变化,且工作面到达一定位置后,位移量变化明 显;当处于顶煤体破坏的过程中,采空区方向的水平位移量与速度增长速率增加;顶煤和顶板运移量呈现 2 种截然不 同的运移特征,前者壁前高于壁后,而后者为壁后高于壁前。  相似文献   

18.
为解决特厚煤层综放开采大煤柱尺寸下煤炭资源损失量大、沿空掘巷小煤柱合理宽度确定方法单一、研究结果与工程实际存在较大差距的问题,本文以扎赉诺尔矿区灵东煤矿为工程背景,提出了基于JW-6型地下高频电磁波CT系统、钻孔应力监测系统、数值模拟等多手段下特厚煤层综放沿空掘巷小煤柱合理宽度的综合确定方法,并依据此方法分析了灵东煤矿特厚煤层综放开采侧向支承压力分布规律及演化规律、煤柱承载及变形特征,以此确定了灵东煤矿特厚煤层综放沿空掘巷小煤柱合理宽度为6.0~9.0m。工程实践结果表明,该综合分析方法确定的特厚煤层综放开采小煤柱宽度合理,回采期间巷道围岩变形量绝大部分控制在300mm以内,变形量小,满足工作面安全生产需要,提高了煤炭资源回收率。该研究成果对特厚煤层综放沿空掘巷小煤柱合理宽度的确定具有重要参考意义。  相似文献   

19.
田兴智  张彪  常庆粮 《中国矿业》2021,30(S2):234-240
针对王家山煤矿急倾斜煤层开采与开拓巷硐群工程越界对地方煤矿安全开采问题,建立了急倾斜煤层开采与开拓巷硐群数值计算模型,分析了覆岩移动变形与应力演化规律。研究结果表明:急倾斜煤层开采,采空区上方煤层先破坏、垮落,顶板沿层理面法向发生弯曲、离层,采空区上部煤体先垮落,呈拱形结构,抑制了上覆煤岩体向采空区的垮落和移动;工作面采高5.2m,顶板发生垮落,底板也会发生滑移,顶板一侧的沉陷大于底板一侧的,在底板一侧出现断崖式现象,但垮落带发育高度小于工作面距井田边界的距离;巷硐群最大位移均发生在泥岩、煤层等软弱岩层以及断层破碎带区域,其扰动效应增加;在软弱岩层时巷道最大影响圈边界增加,影响边界贯通,但最大裂隙带高度为11.5m,裂隙带上脚未发育至井田边界标高。因此,工作面开采与开拓巷硐群对地方煤矿开采没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号