首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract.   We investigated the treatment of acid mine drainage (AMD) by a blue-green algae-microbial consortium and substrate (containing powdered goat manure, wood chips, and soil) in 1 m3 bench scale biological treatment test cells. The microbial mat resulted from the interaction of bacteria and filamentous blue-green algae (predominantly Oscillatoria spp). The experiments were carried out for different water column heights, and were evaluated for 24, 48, 72, 96, and 168 hours of retention. Within 24 hours of retention, the pH increased from 2.93 to 6.78 as net alkalinity went from -125 mg/L to 197 mg/L as CaCO3. Turbidity decreased by 33–54%, sulphate decreased by 23–29%, and hardness decreased by 19 to 26%. We also observed that: 95% of the Fe, 79–97% of the Cu, 84–86% of the Zn, 88% of the Pb, 59–83% of the Co, 22–62% of the Ni, and 28–45% of the Mn were removed. A blue-green algae/microbial mat consortium may be a cost–effective treatment technique for removing metals from AMD.  相似文献   

2.
Abstract.  This paper outlines general trends in the geochemistry of the more than 10,000 km of flooded underground mine workings in the Butte mining district. The waters in question range in pH from 4 to 8, are all moderately to strongly reducing, and show a huge range in concentration of dissolved metals such as Al, As, Fe, Mn, and Zn. Metal concentrations and total acidity are highest in the Kelley mine shaft, which was the main dewatering station used to pump ground water from the underground mine complex during active mining operations. In contrast, metal concentrations are much lower in the outer portions of the district where many of the mines contain hydrogen sulfide formed by sulfate-reducing bacteria. In comparison to the other heavy metals, concentrations of Pb and Cu are quite low in the flooded mine shafts. An interesting inverse correlation between pH and water temperature is noted, which may be partly caused by exothermic pyrite oxidation reactions in the central portion of the district.  相似文献   

3.
Abstract  Closure of Pb-Zn mines in the Iglesiente district (SW Sardinia, Italy) caused the cessation of pumping in 1997 at Monteponi, and in 1998 at San Giovanni. Consequent flooding of underground workings occurred in the district and also involved Campo Pisano. In June 1998, as the water table rose from 160 to 20 m below sea level, the deep saline water mixed with the shallow ground water at Monteponi and nearby mines. In the same period, an increase in dissolved metals (especially Zn, Cd, and Pb) was observed under near-neutral pH conditions. Following peak concentrations, a marked decrease of Zn, Cd, and Hg occurred. Dissolved Pb showed fluctuating concentrations over the monitoring period (1996-2005). In January 2000, when the water table rose to 20 m above sea level, the salinity of ground water decreased significantly at all of the mines. Stratification caused the more saline water at depth to settle three years after rebound started. Depth profiles carried out in 2005 at Monteponi, San Giovanni, and Campo Pisano showed an increase in conductivity and dissolved metals in ground water at deeper levels, especially at depths below sea level.After eight years of rebound, a marine component was still present at depth in ground water at San Giovanni (about 2%), and to a lesser extent at Monteponi (about 0.4%).  相似文献   

4.
Abstract  Closure of Pb-Zn mines in the Iglesias district (SW Sardinia, Italy) caused the cessation of pumping in 1997, and the consequent flooding of underground workings. Deep saline water mixed with the shallow groundwater as the water table rose, increasing salinity. Stratification caused the saline water at depth to settle over a period of three years. At the beginning of rebound, an increase in dissolved Zn, Cd, Pb, and Hg was observed under near-neutral pH conditions. Following peak concentrations, a marked decrease of Zn, Cd, and Hg, and to a lesser extend Pb, occurred. After 7 years of rebound, the concentrations of these metals are relatively low at most mine sites, although the levels are generally still higher than in unmined areas. Nowadays, the highest release of metals to the aquatic system occurs from the weathering of tailings and mine wastes.  相似文献   

5.
Abstract  About 2.5 million t of sedimentary phosphorite mine tailings, highly enriched with Cd, Cr, Cu, Ni, Fe, F, and Zn, are dumped annually in the coastal waters of Togo without any pre-treatment, causing serious pollution problems in the region. We conducted bioaccumulation investigations on fish and crustaceans sampled from the polluted coastal zone. The highest concentrations of metals in fish and crustacean were found close to the tailings outfall and the values decreased further away from the source of pollution. Compared to the international reference norms for seafood given by the WHO, Cd is enriched 10 to 168 fold, Pb 20 to 107 fold, Cu up to 5 fold, Fe up to 15 fold, and F up to 3 fold.  相似文献   

6.
Abstract.  High-resolution airborne thermal infrared (TIR) imagery data were collected over 90.6 km2 (35 mi2) of remote and rugged terrain in the Kettle Creek and Cooks Run Basins, tributaries of the West Branch of the Susquehanna River in north-central Pennsylvania. The purpose of this investigation was to evaluate the effectiveness of TIR for identifying sources of acid mine drainage (AMD) associated with abandoned coal mines. Coal mining from the late 1800s resulted in many AMD sources from abandoned mines in the area. However, very little detailed mine information was available, particularly on the source locations of AMD sites. Potential AMD sources were extracted from airborne TIR data employing custom image processing algorithms and GIS data analysis. Based on field reconnaissance of 103 TIR anomalies, 53 sites (51%) were classified as AMD. The AMD sources had low pH (<4) and elevated concentrations of iron and aluminum. Of the 53 sites, approximately 26 sites could be correlated with sites previously documented as AMD. The other 27 mine discharges identified in the TIR data were previously undocumented. This paper presents a summary of the procedures used to process the TIR data and extract potential mine drainage sites, methods used for field reconnaissance and verification of TIR data, and a brief summary of water-quality data.  相似文献   

7.
Abstract.   The Vale de Abrutiga uranium deposit, located in Central Portugal near the Aguieira dam reservoir, was surface mined. Low-grade ore and waste rock were deposited on permeable ground, close to the mine, and were not revegetated. A lake has formed in the open pit. Surface waters draining the mine site are acidic, have high conductivity, and high concentrations of U, SO42-, Zn, Fe, Mn, Ra, Cu, Th, and Pb. The groundwater and the water from the reservoir cannot be used for human consumption or irrigation. The sampled waters show higher contaminant concentrations in winter than in summer. Stream sediments have high geoaccumulation indices for U, Fe, Ag, Zn, Cr, Co, and Pb. In general, sediments bordering the dam reservoir have higher metal contents in winter than in summer.  相似文献   

8.
Abstract.  Ground water in alluvial sediments of upper Silver Bow Creek is chronically contaminated with heavy metals, including Cd, Cu, Fe, Mn, and Zn. Most of this contamination stems from slag, mill tailings, and waste rock from the Butte mining district that had been deposited along the ancestral Silver Bow Creek floodplain. Much of this mine waste is now buried by fill, topsoil, buildings, or parking lots. Although the pH values of most wells in the region are in the 5.5 to 7.0 range, a cluster of monitoring wells near the site of a former mill and smelter contain water that is strongly acidic (pH < 4.5), with extremely high dissolved metal concentrations (Cu up to 750 mg/L; Zn up to 490 mg/L). Ground water discharging from the area is currently collected by a subsurface French drain and conveyed to a treatment facility where lime is added to precipitate metals from solution.  相似文献   

9.
Abstract  About 2.5 million t of sedimentary phosphorite mine tailings, highly enriched with trace metals such as Cd, Cr, Cu, Ni, and Zn, are dumped annually in the coastal waters of Togo without any pre-treatment, causing serious pollution problems in the region. We conducted laboratory jar tests of a coagulation-flocculation procedure with coagulants RM45U and AN945MPM to clarify the sludge. The efficiency of the method depends particularly on two factors: the amount of coagulant and the solid concentration of the sludge to be treated. Thus, with a mud concentration of 47.7 g/L, the average optimal amount of the two coagulants was 25 mg/L. With both coagulants, water turbidity passed from 60 x 103 NTU to approximately 3 NTU after clarification with the optimal amount of the two coagulants. RM45U reduced concentrations of Pb by 40%, Zn by 98.8%, Fe by 80.6%, and Cd by 32.8%. AN945MPM reduced Pb by 20%, Zn by 98.5%, Fe by 48%, and Cd by 32.8%.  相似文献   

10.
Abstract.  Leachate water quality from covered and uncovered unoxidised sulphide-rich tailings in six pilot-scale (5x5x3 m3) test cells was monitored during 2004 and 2005. The covers consisted of a layer of clayey till, sewage sludge, apatite or Trisoplast (a commercial mixture of tailings, bentonite, and a polymer). All layers were protected by an unspecified till except in one reference cell, where the tailings were left open. All leachate waters showed near-neutral pH as a result of neutralization by calcite in the tailings and by Ca(OH)2 added prior to deposition. Average dissolved sulphur concentrations in the leachates were ≈ 600 mg L-1, except in the cell with sewage sludge (300 mg L-1). The source of sulphur was mainly pyrite oxidation, but residual sulphur probably remained from the enrichment process. The near-neutral pH favoured precipitation of metal-(oxy)hydroxides with subsequent removal of trace elements such as Cd, Cu and Pb (< 15 μg L-1) from the solutions. High concentrations of Co, Mn, Ni, and Zn were found in leachates from the apatite, Trisoplast, and uncovered tailings cells. High As concentrations were found in the leachates in the sewage sludge and clayey till cells. The lowest metal concentrations, redox potential, and highest pH were found in the sewage sludge cell. Decreased elemental metal concentrations during 2004 suggest improved performance over time.  相似文献   

11.
Abstract.  Nighttime high-resolution airborne thermal infrared imagery (TIR) data were collected in the predawn hours during Feb 5-8 and March 11-12, 1999, from a helicopter platform for 72.4 km of the Youghiogheny River, from Connellsville to McKeesport, in southwestern Pennsylvania. The TIR data were used to identify sources of mine drainage from abandoned mines that discharge directly into the Youghiogheny River. Image-processing and geographic information systems (GIS) techniques were used to identify 70 sites within the study area as possible mine drainage sources. The combination of GIS datasets and the airborne TIR data provided a fast and accurate method to target the possible sources. After field reconnaissance, it was determined that 24 of the 70 sites were mine drainage. This paper summarizes: the procedures used to process the TIR data and extract potential mine-drainage sites; methods used for verification of the TIR data; a discussion of factors affecting the TIR data; and a brief summary of water quality.  相似文献   

12.
Abstract  A wetland naturally formed in the discharge from a copper mine tailing impoundment in Rajasthan, India. The wetland is abundantly vegetated. This study investigated changes that occurred in the seepage as it travelled 180 and 380 m (P1 and P2) through the wetland. The pH increased from 6.17 to 7.10 at P1 and 7.34 at P2 in the pre-monsoon season, 6.53 to 7.36 at P1 and 7.77 at P2 in the post-monsoon season, and from 6.20 to 6.63 at P1 and 6.89 at P2 in the winter. Contaminant removal at P2 ranged from 40 to 95%.  相似文献   

13.
Abstract.   The effluent water produced by the washing process at the Al-Hisa and Al-Abyad phosphate mines in central Jordan was investigated in summer 2002. Twenty-four effluent and 10 ground water samples were collected and analyzed. There was a significant difference in water chemistry between input (groundwater) and output (effluent water) but, although the investigated area is highly fractured, the stable isotopic results indicated little or no mixing between the effluent water and groundwater in the area. This is attributed to the precipitation of clay-sized particles along the drainage channel. The quality of the effluent from the Al-Hisa mine was better than at the Al-Abyad mine, with electrical conductivity averaging 1474 µS/cm at Al-Hisa and 3250 µS/cm at Al-Abyad. The difference in effluent quality is attributed to slight lithological differences. At both mines, chloride was the predominant ion in the effluent water, with an average concentration of 669 ppm and 1299 ppm at the Al-Hisa and Al-Abyad mines respectively. The concentrations of heavy metals in the high-pH effluent water were very low, presumably due to precipitation and absorption onto suspended fine-grained particles. The effluent water from both mines was found to be relatively low in sodium and radiation, and suitable for the irrigation of salt tolerant plants.  相似文献   

14.
Abstract  The copper mine at Kilembe in the Ruwenzori Mountains in western Uganda ceased to operate in 1978 but a steady flow of contaminants, including Cu, Co, Ni, Zn, Cd, and sulphate, continues to enter the Nyamwamba-Rukoki River, which passes through Queen Elizabeth National Park, and finally flows into Lake George. Lake George is quite shallow, alkaline, and highly eutrophic. Measuring mass-flow of contaminants, water, and suspended solids in the Rukoki River near Kasese allowed us to estimate their input into Lake George. Grid sampling of lake sediments indicated that the contaminants settle near the two mouths of the river; low concentrations in a drill core in the centre of Lake George indicate that further dispersion within the lake is small. Sequential extraction experiments on lake sediments and lake water analyses suggest low bioavailability of the heavy metals. We conclude that Lake George is a highly resilient system that efficiently immobilises contaminants. Though there is no health risk for the population under present environmental conditions, a reduction of the contaminant load is desirable.  相似文献   

15.
Abstract.   The discharge of highly mineralised mine waters with enhanced 226Ra and 228Ra activity concentrations has affected creeks, rivers, sediments, soils, and plants along the Lippe River and its tributaries. 226Ra activity concentrations were elevated in all water samples receiving mine water, with activity concentrations gradually decreasing with increased distance from the colliery due to dilution and chemical precipitation of radium with barium. Increased concentrations of radium and radium decay products were also measured in sediments and flood-affected soils. The sediments show an enrichment of 226Ra up to a factor of 750, while the contaminated soils only reach a factor of 10. In aquatic plants, a 4-fold increase in 226Ra activity concentrations was measured downstream of the discharge points. The contamination of the river banks and adjacent floodplain with radium is responsible for enhanced gamma dose rates, which, along with the incorporation of soil by playing children, provide potential radiation exposure to the public.  相似文献   

16.
Abstract.  An analog pit lake (APL) test has been developed to predict pit lake water quality following closure of an equatorial copper-gold mine. The juvenile (0-9 years after closure) pit lake (JPL) water budget will comprise 10% rainfall; 26% surface runoff; 40% wallrock runoff, and 24% deep groundwater inflow. The mature (>65 years after closure) pit lake (MPL) will consist of 39% rainfall; 29% surface runoff; 15% wallrock runoff; 3% deep groundwater inflow, and 1% shallow groundwater inflow, with the balance (13%) contributed by the JPL. Wallrock runoff due to incident precipitation was replicated in humidity columns, subaqueous wallrock leachate by leaching columns of each rock type with groundwater, rainwater by addition of sea salt to deionized water, and surface runoff by a sample from a local creek. The solutions were combined in aquaria and the appropriate fraction evaporated, 7% for the JPL and 36% for the MPL. Electron microprobe analysis of precipitates identified clays and Al, Cu, and Zn adsorbed to ferrihydrite surfaces. A preliminary pit design resulted in an acidic (pH 3.3) JPL containing 7 mg/L Cu. However, by modifying the design to exclude a potentially acidgenerating andesite unit, the JPL water quality improves (e. g., pH 6.7; Cu 0.002 mg/L). The MPL pH with the andesite would be 6.1 (Cu = 2.2 mg/L), while the final design results in a pH of 7.1 and 0.22 mg/L Cu. The APL test can also be used to corroborate numerical models predictions and assess the efficacy of mitigation alternatives.  相似文献   

17.
Abstract  Mine effluents should be treated so that they can either be re-used (e. g. for mining activities or irrigation purposes) or discharged into a river system. The results of this study showed that applying laboratory scale biological sulphate removal technology to a nickel/copper mine effluent (BCL mine, Botswana) consistently lowered sulphate concentrations from an average of 2000 to 450 mg/L, and increased the pH from 5.8 to 6.5. During this period, the hydraulic retention time varied from 24 to 12 h. The Ni and Zn concentrations were reduced from a maximum of 5.86 to 0.15 mg/L and from a maximum of 38 mg/L to 0.03 mg/L, respectively, presumably precipitated as metal sulphides.  相似文献   

18.
Abstract  Batch incubation and flow-through column experiments were conducted to evaluate the use of emulsified soybean oil for in situ treatment of acid mine drainage. Addition of soybean oil, soluble substrates, and a microbial inoculum to the batch incubations resulted in complete depletion of SO4, 50% reduction in Fe, and an increase in pH to >6. A one time injection of emulsified soybean oil, lactate, yeast extract, and a microbial inoculum stimulated SO4 and metal ion reduction for ≈300 days in laboratory columns packed with mine tailings receiving influent solutions with a pH≈3 and≈5. In all emulsion treated columns, SO4 and Fe were reduced, pH increased to >6, and Al, Cu and Zn removal efficiency was 99% or greater. Cu, Fe, Mn and Zn were removed as metal sulfides and/or carbonates with removal efficiency decreasing with increasing metal sulfide solubility. The low pH and high heavy metals concentrations did not significantly inhibit biological activity. However, SO4 removal with associated precipitation of metal sulfides may have been limited by the short hydraulic retention time (6-7 days) of the columns. There was a significant hydraulic conductivity loss in one of the four treated columns, indicating that hydraulic conductivity loss may be an issue under certain conditions.  相似文献   

19.
The Chemistry of Waters Associated with Metal Mining in Macedonia   总被引:1,自引:0,他引:1  
Abstract  Pollution from current and past mining is a significant problem in several parts of the former Yugoslav Republic of Macedonia. Water from six different mining areas in Macedonia was analysed to assess the effects of metalliferous mining activities. Drainage sediments at all locations show evidence of physical and chemical contamination; water compositions, however, were more variable. Low pH water associated with mining has led to the dissolution of minerals and the mobilization of metals from the ores and the host rocks. Only Sb was noted to exhibit enhanced mobility in higher pH waters. The Zletevo Pb-Zn mine discharges low pH water that has high levels of several metals, including Al, Zn, Cd, and Fe; sediment concentrations are grossly elevated for several km downstream. Toranica and Sasa Pb-Zn mines exhibit similar sediment contamination of Pb, Zn, Cd, and other ore-related metals. However, concentrations of metals in waters are far lower at both of these mines, due to less pyrite in the ore and the buffering of the acid waters by carbonate host lithologies. At the Buchim copper mine, waters are both acidic and high in dissolved solids; Cu concentrations exceed 100 mg/L. Krstov Dol and Alshar are small, disused As-Sb mines that discharge waters that exceed potable values for some contaminants (e. g. As), but this may be related to the mineralization of the bedrock rather than the mines. In general, metal concentrations decreased downstream from the source due to dilution from other rivers and coprecipitation of metals on other mineral phases (e. g. Fe-, Al- and Mn-oxides, and hydroxides).  相似文献   

20.
Abstract.  A study of the effects of mine waste on Methow River habitat in the north Cascade Mountains in the state of Washington, U.S.A. revealed impacts of sediment metal contamination on invertebrates and fish. The objectives were to determine: (1) effects of metal contamination on the growth and development of caddisfly larvae (Ecclesomyia spp.) and trout (Oncorhynchus mykiss), (2) whether in vivo exposure of caddisfly larvae in microcosms to metal contaminants induces nuclear apoptosis and the formation of electron-dense granules in gut epithelial cell mitochondria, (3) whether in situ exposure of trout and caddisfly larvae to sediment metal contamination induces nuclear apoptosis and the formation of electron-dense granules in mitochondria of gut epithelial cells and hepatocytes, and (4) whether the composition of the mitochondrial granules reflects sediment metal contamination. Electron microscopy was used to detect the cytotoxic effects of metal contamination. An above-and-below-mine approach was used to compare exposed and reference populations. Copper contamination in sediments was associated with effects on trout and caddisfly larvae at the cellular level and with secondary effects related to reduced body weights and delayed development occurring at higher levels of biological organization. Electron dense granules in the mitochondria of exposed caddisfly and trout mitochondria were detected. Elemental analysis of mitochondrial granules by X-ray analysis suggested Cu was being sequestered by mechanisms that normally regulate transient cell Ca concentrations. Chromatin compaction, margination, and the observation that large vesicles with bi-layer membranes were being expelled from the nuclei of affected cells suggest that apoptosis was also occurring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号