首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
巷道围岩应力分布和围岩结构的完整性对大采高综采工作面区段煤柱宽度留设有着重要影响。以山西马堡煤业15#煤为研究背景,通过现场实测、实验分析、数值模拟等手段,分析煤柱应力环境、不同宽度煤柱应力变化规律及临空巷道围岩稳定性,并对合理区段煤柱宽度进行研究。研究结果表明:区段煤柱7.0 m深度为应力峰值区域,回采巷道侧煤柱塑性区宽度在5.0~6.0 m;大采高综采工作面合理区段煤柱留设宽度为19 m。  相似文献   

2.
以某矿5#大倾角特厚煤层区段煤柱留设为工程背景,基于极限平衡理论和广义米塞斯准则理论计算得到煤层倾角为35°时区段煤柱宽度,得出留设区段煤柱25.6 m左右。运用FLAC3D数值模拟了不同煤柱宽度时巷道围岩应力和塑性区分布特征,模拟结果表明留设区段煤柱宽度在25m较合理。  相似文献   

3.
为合理留设某矿综放工作面的区段煤柱,保证回采巷道稳定和提高煤炭资源采出率,采用理论计算、FLAC 3D数值模拟和现场实测等综合研究方法对综放工作面区段煤柱留设进行研究。通过沿空煤体力学状态分析,得出应力极限平衡区宽度为1.77 m,应力降低区位于距巷帮侧8 m范围内,应力峰值影响区位于距巷帮侧8~45 m内,原岩应力区位于距巷帮侧45 m以远;通过理论计算与FLAC 3D数值模拟对不同区段煤柱宽度(3、5、7、10、15、20 m)的应力场和位移场特征进行分析后,确定合理的区段煤柱宽度为5 m;通过现场实际监测对上述研究成果进行了验证。结果表明,当区段煤柱宽度为5 m时,可兼顾煤炭资源回收和巷道优化布置,该区段煤柱留设方法可为类似条件下的工程实践提供依据。  相似文献   

4.
极近距离煤层群开采,上下两层煤区段煤柱留设宽度问题,一直是百良旭升煤矿安全生产所关注的焦点之一。基于理论计算得出,上煤层区段煤柱的最小宽度为11.88m,下煤层回采巷道的内错最小距离为2.33m。同时借助于UDEC数值模拟软件,分析上煤层在不同区段煤柱宽度条件下的区段煤柱的应力分布、塑性区分布规律,得出上煤层区段煤柱的最小宽度为12m;上煤层采空区残留的区段煤柱宽度为12m时,下煤层回采巷道在采用内错式布置时,下煤层回采巷道内错距离为3m。综合分析以上结果表明:上煤层合理区段煤柱留设为12m,下煤层区段煤柱宽度为18m比较合理。研究结果为缓解该矿的采掘关系紧张、提高煤炭资源回采率、回采巷道围岩的稳定性提供了理论支持。  相似文献   

5.
《煤》2021,(7)
以马军峪煤矿90109综放工作面合理的区段煤柱宽度留设为背景,通过理论计算和Flac~(3D)软件建立模型研究马军峪煤矿90109综放工作面回采时不同区段煤柱宽度下煤柱的应力分布,确定马军峪煤矿90109综放工作面的区段煤柱宽度为20 m。对留设的煤柱进行钻孔应力监测,通过对现场监测数据分析可知,在留设20 m宽煤柱的情况下,90109综放工作面回采过程中巷道变形在可允许范围内,能够保证该综放面的安全回采。  相似文献   

6.
为了研究特厚倾斜煤层沿空巷道煤柱尺寸留设的问题,利用理论分析和数值模拟相结合的方法,分析煤层上采空区底板卸压规律以及采空区下煤层侧向支承压力力学模型,确定合理的区段煤柱宽度应大于11.9 m或区段煤柱与巷道宽度之和小于11.9 m。根据理论计算,设置5组不同煤柱宽度数值模型,分析采空区下特厚倾斜煤层沿空巷道开挖后不同宽度煤柱所受垂直应力以及水平位移变化规律,确定合理的煤柱宽度为6~一8 m。结合理论计算与数值模拟结论,在巷道宽度为5 m的前提下,合理的区段煤柱宽度应小于6.9 m,建议区段煤柱宽度取6 m。  相似文献   

7.
平朔井工三矿区段煤柱宽度优化研究   总被引:3,自引:1,他引:2  
区段煤柱的留设宽度是影响回采巷道围岩稳定性的重要因素,平朔井工三矿工作面区段煤柱宽度一直采用经验值20m,为优化区段煤柱宽度,提高资源采出率,采用现场实测、理论计算和数值模拟方法对平朔井工三矿合理区段煤柱宽度进行了研究。煤柱应力实测表明:井工三矿9104与9105工作面间20m煤柱宽度有一定的富裕量,根据极限平衡理论计算与数值模拟结果,平朔井工三矿区段煤柱合理宽度应大于12m。  相似文献   

8.
徐慧刚 《煤矿现代化》2022,31(1):106-109
针对新元煤矿9104工作面沿空巷道,综合理论分析、数值模拟的结果,优化了9104煤柱宽度的留设,综合确定了9140工作面区段煤柱合理宽度为9 m。研究结果表明:采用理论分析计算得到沿空巷道煤柱宽度应不小于9 m;采用数值模拟得到当煤柱宽度为6、9、25 m时,煤柱帮及实煤体帮的变形量均较小,但当煤柱宽度为25 m时处在应力升高区,巷道两帮所受垂直应力较大,且煤柱太宽造成了不必要的资源浪费。当煤柱为6 m时,实煤体帮变形较大,综合考虑下9 m煤柱为留设最佳宽度。  相似文献   

9.
为确定区段煤柱的合理尺寸,从保持煤柱稳定性所需宽度条件入手,建立煤柱两侧塑性破坏区理论计算公式。结合现场实测数据,提出留设煤柱宽度27、30、33 m 3种方案;利用FLAC3D数值软件分析了下区段工作面回采时煤柱及巷道的应力场及塑性变形特征。研究结果表明,当区段煤柱宽度为27 m时,煤柱两侧应力集中现象明显,塑性破坏深度包络帮锚杆全长且巷道边缘处于应力增高区,不利于巷道稳定;当煤柱宽度达到30、33 m时,巷道围岩情况明显改善。综合考虑3个"有利于"原则,确定常村矿2207工作面区段煤柱合理宽度为30 m。  相似文献   

10.
大采高综放工作面由于生产需要,形成了一类超高煤帮、特大断面的巷道,增加量巷道支护的难度。留设合理宽度的区段煤柱,能够使巷道处于应力降低区内,避开残存支承压力顶峰的影响,有效改善巷道围岩的应力环境,降低支护难度、增强巷道的安全可靠性,还能够一定程度提高资源的回收率。本文以塔山矿8105工作面5105回风巷道区段保护煤柱为例,应用极限平衡理论计算得到合理的煤柱尺寸为34m,采用FLAC5.0数值模拟软件模拟分析了不同护巷煤柱宽度煤柱内的垂直应力分布和巷道变形破坏情况。通过理论分析与数值计算相结合,最终确定留设煤柱宽度为34m。  相似文献   

11.
为了减少综放工作面煤炭资源损失,进一步对煤柱资源进行回收,围绕区段煤柱合理留设这一难题,以山西某矿9-10-11号煤层二采区为工程背景,对该矿工作面合理区段煤柱尺寸进行了研究。理论计算结果表明,工作面区段煤柱合理宽度不应低于18.4 m,采用数值模拟方法,对7种煤柱留设方案进行了对比分析,最终确定区段煤柱宽度为20 m,能够实现煤炭资源回收,并保证巷道安全稳定性。  相似文献   

12.
针对高强度开采工作面区段煤柱合理宽度留设问题,以南阳坡煤矿3号煤层8701工作面为工程背景,综合应用理论分析、数值模拟与现场试验相结合的研究方法,研究了工作面区段煤柱合理宽度及围岩联合支护技术。通过理论方法计算出3号煤层区段煤柱的宽度应大于13m,并利用数值模拟的方法对比分析不同宽度煤柱受力与塑性区变化情况,综合考虑巷道稳定性及安全高效开采等因素,确定煤柱合理宽度为18m;提出采用锚杆及锚索补强联合支护系统进行巷道支护,现场监测表明18m煤柱下巷道围岩控制效果好,为类似条件下巷道布置提供了有益借鉴。  相似文献   

13.
基于理想弹塑性力学理论计算、FLAC3D数值模拟分析与多处矿区工程实践,得到宁东试验矿井现采区段留设的40 m煤柱宽度明显偏大。采用现场综合试验,监测受工作面采动影响前后,16组空心包体三维应变的实时增量、不同煤柱宽度(10 m,20 m)试验巷道的围岩应力与变形动态变化。试验结果表明:40 m宽度煤柱内存在明显的低应力增量弹性核区,该区域是巷道布置的有利位置;试验采面侧向支承压力的超前影响范围约45 m,随着采面推进,本区段40 m煤柱内采动应力峰值逐步由侧壁向其深处传递,第一主应力增量逐渐衰减;10 m煤柱宽度试验巷道的平均变形小于20 m煤柱巷道。综合以上理论计算与井下试验监测结果,确定出试验工作面特定区段煤柱设计的合理宽度范围(8.9~12.5 m),从而为类似地质采矿条件下区段煤柱宽度设计提供经验指导。  相似文献   

14.
煤柱宽度的合理留设是维持巷道稳定、防止冲击地压和次生灾害发生的重要保障,因此选择煤柱合理宽度时应考虑这些因素[1]。本文的试验研究对象为某矿8202工作面,首先通过理论计算得到工作面倾向支撑应力分布规律,其次对4种煤柱尺寸进行数值模拟,得到巷道与煤柱应力和位移分布以及破坏情况,兼顾安全性和经济性因素,确定8202工作面区段的煤柱尺寸留设为28m。  相似文献   

15.
铜川矿区区段煤柱宽度优化研究   总被引:4,自引:0,他引:4  
针对铜川矿区区段煤柱宽度偏大、采区采出率偏低等生产实际,综合采用现场实测、理论计算、经验公式、数值模拟等方法进行了煤柱宽度的优化研究。理论分析与实测表明,在目前的工字钢梯形棚支护条件下,区段煤柱靠近巷道侧的塑性区宽度为4~5 m,靠近采空区一侧的塑性区宽度为5.2 m,煤柱内部弹性区宽度按2.5~4.6 m考虑为宜。据此结合该矿区当前的开采深度,通过离散元数值软件进行了不同煤柱留宽的效果检验,最终确定在工字钢架棚支护的条件下,区段煤柱的合理留宽为20 m。  相似文献   

16.
为减少井下因留设区段煤柱造成煤炭资源的丢失,以内蒙某矿大采高沿空掘巷留设小煤柱为研究背景,通过对地质资料勘察、有限元数值模拟方法对留设不同小煤柱宽度尺寸进行研究,研究结果表明:当煤柱宽度为3 m、4 m时,巷道处于煤柱支承应力升高区域内;煤柱宽度为5m、6m、7m时,巷道处于煤柱应力降低区域,留5 m时的煤柱应力峰值依然较高,峰值为23 MPa,留7m小煤柱时煤柱的应力降低幅度不大,留设7m煤柱浪费煤柱资源,不符合现场生产效益的要求。所以,从煤柱承载稳定性和煤炭的采出率角度,留设6m小煤柱最为经济合理,现场工业性试验表明该条件下沿空掘巷巷道控制效果良好。  相似文献   

17.
针对黄陵矿业二号煤矿小煤柱留设宽度的问题,结合矿井留设宽煤柱存在的问题,以303工作面辅运巷为工程背景,采用理论计算得到煤柱尺寸为4~7 m是力学上的最优区域;运用数值模拟的手段对5~20 m内的区段煤柱一侧边缘应力和沿空侧巷道围岩进行模拟分析,建议煤柱宽度应在大于5 m、小于10 m的范围内。综合研究确定辅运巷煤柱宽度为7 m时即可保障巷道围岩稳定,也可提高煤炭效益。  相似文献   

18.
为了科学设计黑龙关煤矿11#煤层区段煤柱的宽度,采用FLAC3D软件建立11603工作面顺槽数值模型,并通过理论计算、工程实测等方法对11#煤层区段煤柱宽度进行优化设计。通过建立覆岩-煤柱力学模型,模拟研究不同宽度区段煤柱影响下煤柱内的垂直应力分布特征及沿空巷道掘进稳定后巷道围岩的表面位移量,最终确定11603工作面顺槽沿空掘巷留设合理煤柱宽度为9 m。现场应用9 m区段煤柱进行11603工作面顺槽的沿空掘巷作业后,围岩表面位移量均在合理范围内,9 m宽区段煤柱可以保证巷道的安全掘进及正常回采。  相似文献   

19.
为了有效测定厚煤层工作面的煤柱合理宽度,针对1208工作面生产地质条件,采用理论计算和数值模拟相结合的方法,对合理的煤柱宽度进行了研究。通过理论计算,初步确定了区段煤柱留设25 m,运用数值模拟分析了区段煤柱内应力分布规律,在煤柱宽度在15~22 m时,应力值处于“谷底”,且处于弹性区。现场应用表明,巷道顶底板移近量最大为169 mm,两帮移近量最大为383 mm,巷道维护效果好,煤柱稳定。研究成果可为该矿后续的工作面区段煤柱尺寸留设提供借鉴。  相似文献   

20.
沈明柱  段宏飞 《煤矿安全》2014,(12):207-210
为了增强沿空掘巷巷道的稳定性,提高资源回采率,以大同矿区塔山煤矿8204工作面为研究背景,对沿空掘巷留设区段煤柱的合理宽度进行了研究。首先对特厚煤层综放工作面在沿空掘巷情况下区段煤柱的合理宽度进行了理论分析,然后采用FLAC3D数值模拟软件建立了采空区一侧不同宽度区段煤柱的力学模型,通过模拟结果表明:区段煤柱的宽度在5~10 m时,巷道处于低应力区,支护相对稳定。最后将理论计算和数值模拟相结合,同时参考塔山矿综放工作面矿压显现规律及微地震监测得出的相关结论,综合考虑巷道跨度大、隔绝采空区瓦斯等安全因素,确定了特厚煤层综放工作面沿空掘巷留设区段煤柱的合理宽度为8 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号