首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对伏牛山高硫铜锌矿石进行工艺矿物学和选矿工艺研究,研究表明,采用优先选铜—锌硫混合浮选再分离及铜锌硫依次优先浮选工艺可较好地回收矿石中的铜锌硫,优先选铜—锌硫混合浮选再分离流程得到含铜27.17%、铜回收率86.27%的铜精矿,含锌50.53%、锌回收率88.11%的锌精矿,含硫42.34%、硫回收率78.23%的硫精矿。选矿厂按此流程改造后,可产出含锌42.19%、锌回收率59.30%的锌精矿。  相似文献   

2.
四川某高硫铜铅锌矿选矿工艺研究与生产实践   总被引:2,自引:0,他引:2  
根据矿石性质,针对四川某高硫铜铅锌矿进行了浮选分离研究,工业试验采用铜铅混合浮选再分离—锌、硫顺序浮选的选矿工艺流程获得了铜精矿品位20.15%,回收率80.12%;铅精矿品位60.10%,回收率83.24%;锌精矿品位47.01%,回收率78.64%;硫精矿品位38.92%,回收率72.64%的较好选别指标。工业试验表明,新工艺取得了较好的技术经济指标。  相似文献   

3.
锡铁山铅锌矿选矿车间有Ⅰ、Ⅱ、Ⅲ、Ⅳ共4个系列生产线,生产流程复杂,且各个流程所用药剂及pH值的调节均不相同。生产中为合理控制矿浆pH值,通过单因素试验,考察了不同阶段浮选pH值对铅锌精矿品位及回收率的影响。考察结果表明:在一定的pH值范围内,铅锌矿才能有较好的可浮性,高于或低于该范围,对铅锌矿的可浮性有较大影响;同时pH值还影响浮选药剂活性,浮选药剂需要在特定的pH值环境下才能稳定存在,锡铁山铅锌矿选矿车间Ⅰ、Ⅱ、Ⅲ系列采用的是低碱浮选工艺流程,主要回收铅、锌、硫;Ⅳ系列采用的是高碱浮选工艺流程,主要回收铅、锌。  相似文献   

4.
青海某难选铅锌矿选矿试验研究   总被引:1,自引:0,他引:1  
青海某难选铅锌矿含铅1.32%、含锌3.91%、含铜0.10%、含硫13.71%。为更好的开发利用该矿产资源,进行了详细的选矿工艺研究。针对该矿石嵌布粒度细、矿物组成复杂以及含有高铁闪锌矿和磁黄铁矿等特点,选用石灰和BJ作为锌硫分离的联合抑制剂,采用铅优先浮选—锌硫混合浮选—锌硫再磨分离的工艺流程,获得了较好的选矿指标,铅精矿含铅66.06%、铅回收率93.95%,锌精矿含锌45.15%、锌回收率89.35%。  相似文献   

5.
对某微细粒难选铅锌矿进行了选矿试验研究,针对矿物嵌布粒度细,共生关系复杂的特点,采用“铅硫优先浮选—锌部分循环浮选—中矿再选—铅硫分离”的选矿工艺流程,在磨矿细度-325目含量80%的条件下,最终可获得铅品位55.38%,回收率为46.11%的铅精矿和锌品位48.67%,回收率66.42%的锌精矿。  相似文献   

6.
某铅锌多金属矿选矿工艺研究   总被引:6,自引:5,他引:1  
对含铅4.5%、锌15%~18%、铅氧化率小于8%、锌氧化率小于5%的铅锌矿,在工艺矿物学研究基础上,经过多方案对比及大量试验研究,采用铅硫混选—混选精矿再磨后铅硫分离—混选尾矿选锌—选锌尾矿丢弃的原则流程,获得了铅精矿品位58.74%、铅回收率87.34%,锌精矿品位56.99%、锌回收率91.83%的选矿指标,并较好地回收了其它有价金属。提供的工艺流程已作为扩建2000t/d规模选矿厂的设计依据。  相似文献   

7.
根据某铜铅锌矿矿石中铜、铅、锌等硫化矿物嵌布关系复杂、嵌布粒度极不均匀的特点,采用"铜铅混合浮选—混合精矿再磨—铜铅分离—混合浮选尾矿选锌"的工艺流程及合理的药剂制度,闭路试验获得良好的铜、铅、锌选矿技术指标,同时,矿石中的伴生银也得到了较好回收,铜、铅、锌及银的回收率分别达到65.98%、88.83%、85.31%、84.98%。  相似文献   

8.
新疆某铅锌矿矿石硫含量高,且含有一定量的含碳质物,属含碳高硫复杂难选铅锌矿石。矿石中方铅矿嵌布粒度不均匀,且与闪锌矿、黄铁矿共生关系复杂,严重影响选矿过程中铅锌分离及铅硫分离。根据原矿性质,采用"预先脱碳—铅锌硫依次优先浮选"工艺流程处理该矿石,实现了铅、锌矿物和黄铁矿的高效分离,所得铅精矿铅品位59.84%,铅回收率88.02%,含锌3.66%;锌精矿锌品位52.34%,锌回收率94.05%,含铅1.45%,硫精矿硫品位50.26%,硫回收率88.13%。  相似文献   

9.
某高泥氧化铅锌矿铅、锌品位分别为3.45%、4.64%,铅、锌均主要以氧化矿的形式存在,分别占总金属量的69.65%、53.02%,常规选矿工艺难以回收。为合理开发利用该矿石,采用硫化焙烧—铅浮选—锌浮选原则流程进行选矿试验。结果表明,原矿经硫化焙烧—焙砂磨矿(-0.074 mm 85%)—1粗2精2扫优先浮选铅—浮铅尾矿1粗1精2扫选锌闭路流程选别,可获得铅品位45.12%、含锌6.42%,铅回收率78.27%的铅精矿和锌品位46.31%、含铅2.46%,锌回收率72.74%的锌精矿,实现了该矿石资源的高效回收利用,可为开发同类矿石提供技术参考。  相似文献   

10.
某高银低铅低锌多金属硫化矿银品位达到76.28 g/t,含铅0.78%,含锌0.69%。为有效回收矿石中的有价组分,基于系统的工艺矿物学研究,提出高效抑制锌硫,强化回收银铅技术思路,最终确定采用银铅优先浮选—锌硫混合浮选—锌硫分离工艺流程。通过条件试验确定适宜的药剂制度,最终全流程试验获得银品位4 312.2 g/t、银回收率85.19%、铅品位45.28%、铅回收率88.89%的银铅精矿;锌品位45.39%、锌回收率79.09%的锌精矿;硫品位32.17%、硫回收率79.77%的硫精矿。试验指标良好,实现了矿石中银、铅的良好回收,并综合回收了锌和硫,可为同类铅锌矿石的开发利用提供技术依据。  相似文献   

11.
张汉泉 《中国矿业》2012,21(9):91-94
某铜矿石铜矿物主要为黄铜矿,脉石矿物中主要是斜长石,分选过程中要求同时得到铜精矿和硫精矿。根据矿石性质,通过浮选条件试验和流程试验,结果如下:采用混合浮选—分离浮选流程,当磨矿细度为75%-0.076mm左右时,可获得的铜精矿含铜25.31%、含金6.7g/t,铜、金回收率分别为87.50%、84.52%。试验中未获得合格的硫精矿;采用一粗一扫二精选别流程,可获得单一的铜精矿。其铜品位与回收率分别为19.13%与88.13%,铜精矿含金5.33g/t,金的回收率为89.55%。方案Ⅰ铜精矿指标较好,方案Ⅱ流程简单、生产成本低。  相似文献   

12.
某镍铜矿随着不断深部开采,矿石逐渐趋于“贫细杂”,给该资源的综合利用造成一定的困难。本文对该镍铜矿进行详细的的工艺矿物学特征研究,为该矿石的高效回收提供技术支撑。研究表明,该矿石属硫化型镍铜矿石,Ni品位0.38%,硫化率84.00%,Cu品位0.09%,硫化率97.24%,铜氧化率低,对铜的浮选回收有利;Co、Au、Ag可考虑综合回收。矿石中金属硫化矿物主要为磁黄铁矿、镍黄铁矿,其次为黄铁矿、黄铜矿、少量及微量针镍矿、闪锌矿、红砷镍矿、辉砷镍矿和方铅矿。脉石矿物中片状或纤状矿物较多,在磨矿过程中易集中于相对较粗的粒级,且有部分含镍滑石浮于矿浆表面,易进入精矿。因此,筛选对滑石等易浮脉石的抑制剂至关重要。矿石中硫酸镍为水溶性镍,如碧矾、含镁碧矾等,硅酸镍为以离子状态被某些硅酸盐矿物吸附或与其钙镁离子置换形成的含镍硅酸盐矿物,氧化镍为由于氧化作用残留于磁性铁中的镍,这三类矿物均为氧化作用的产物,是浮选难以富集的,影响镍的回收。  相似文献   

13.
青海省五龙沟金矿原矿石金品位为2.32g/t,品位较低,选矿厂生产中,金的浮选回收率仅为75%左右。为了明确该原矿矿石的工艺矿物学特性,有效提升选矿厂浮选回收率等选矿技术指标,进一步实现该矿产资源的综合开发利用,通过采用原子吸收分光光度计、电感耦合等离子体发射光谱仪、偏光显微镜、扫描电镜等仪器,对选矿厂堆场原矿矿石开展了工艺矿物学研究,从而查明了该矿石各元素含量、矿物组成、矿石中金及其载体矿物的嵌布粒度和赋存状态。结果表明,该矿石中有害元素砷和碳含量相对较高;原矿中贵金属矿物主要为自然金,金属矿物主要为黄铁矿和毒砂,其次为赤、褐铁矿、臭葱石等,脉石矿物主要为大量的石英和绢云母,其次为碳酸盐矿物、绿泥石、方解石等;矿石中主要的载金矿物为黄铁矿、毒砂和臭葱石,其中黄铁矿嵌布粒度以中粗粒为主,黄铁矿-0.64+0.04mm粒级占86.95%,毒砂嵌布粒度以中、细粒为主,-0.160+0.01mm粒级占90.09%。矿石中金的粒度极细,可见金的粒度绝大多数在10μm以下,小于0.02mm的金粒占86%以上。该原矿矿石属于微细粒-超微细粒含砷、碳的极难选冶金矿石。  相似文献   

14.
会泽铅锌硫化矿异步浮选新技术研究   总被引:4,自引:0,他引:4  
李俊旺  孙传尧  袁闯 《金属矿山》2011,40(11):83-91
通过单因素和正交浮选试验研究了会泽方铅矿、黄铁矿与闪锌矿之间的浮选分离。根据浮选动力学基本原理,对方铅矿和黄铁矿的浮选动力学特性进行了分析。结果表明,基于总体平衡理论的分速浮选模型可以较好地模拟方铅矿和黄铁矿的浮选过程,浮选回收率模型拟合值与试验值之间的相关系数R2均达到0.999。研究认为,异步浮选新技术充分利用不同矿物及同种矿物可浮性和浮游速度特性,实现矿物的个性化、差异性浮选。进一步探讨了异步浮选新技术的理论背景,对选矿人员完善已有工艺及开发新技术具有一定的参考意义。  相似文献   

15.
提高某复杂铅锌矿伴生银选矿指标新工艺研究   总被引:3,自引:0,他引:3  
为提高某复杂铅锌矿伴生银选矿指标,以CaC l2+LY-05组合药剂作为黄铁矿的抑制剂,ZnSO4作为锌矿物的抑制剂,乙硫氮+丁铵黑药作为铅矿物的捕收剂,在较低的矿浆pH值条件下采用抑锌浮铅优先浮选流程来实现铅锌分离并尽可能回收其中的银矿物。试验结果表明,采用新工艺可使铅精矿产品中铅品位达到65.15%、回收率为60.29%,银品位达到3 200 g/t、回收率为44.09%,与原工艺相比,铅回收率提高了3.26%,银回收率提高了31.98%;锌精矿产品中锌品位达到58.25%、回收率为83.65%,银品位达到230 g/t、回收率为30.97%,与原工艺相比,锌回收率提高了5.40%,银回收率提高了12.05%。与原工艺相比,新工艺不仅大幅度提高了银的回收率,而且铅、锌精矿质量与回收率也得到了提高。  相似文献   

16.
为高效利用锡铁山深部(-2 702 m)铅锌矿石资源,鉴于工艺矿物学对矿石浮选性能研究的重要指导作用,利用X射线衍射(XRD)分析仪和显微镜照相等测试分析技术,对该矿石进行了详尽的工艺矿物学研究,并探究了矿石的浮选特性。结果表明,矿石中金属矿物主要是黄铁矿,其次为闪锌矿和方铅矿,还可见少量的磁铁矿、褐铁矿、黄铜矿、铁闪锌矿、磁黄铁矿,可综合回收的有价矿物为铅、锌、硫及伴生金银,脉石矿物则以透辉石居多,其次是石英、方解石、绿泥石;方铅矿和闪锌矿分别呈中-细粒及中粒嵌布特征,大部分有用矿物的嵌布粒度在74μm以上,对矿物之间的解离十分有利。浮选试验结果表明,在较粗的磨矿细度下,即可实现矿石中主金属铅锌的高效浮选,实验室利用现有生产工艺处理该矿石,可获得理想的选矿综合指标,试验结果可为生产现场进行深部矿石的选矿生产提供技术依据。  相似文献   

17.
贵州水银洞金矿石为微细粒浸染型难选金矿石,矿石中载金矿物黄铁矿、毒砂等粒度微细、且含大量易泥化脉石矿物。选矿厂采用细磨浮选工艺,细度需达到-74 μm占90%左右载金矿物才能充分解离,磨矿过程容易产生“过磨”。通过对浮选厂磨矿、粗选、精选等作业取样、浓度和细度检查、筛析、化验分析等手段开展详细的全流程工艺流程考察,发现存在“泥化”、浮选药剂复杂、精选浓度低、尾矿中金在粗细粒级回收效果差等问题。针对上述问题,在实验室选矿药剂制度优化试验研究的基础上,通过调整磨机球配减少“过磨”,通过调整作业浓度、优化药剂制度、减少精选次数等措施,提高精矿产率,减少中矿的循环,强化了粗、精选作业效率,降低了尾矿品位,使浮选指标提高,金回收率比工艺优化前提高5.76%,达到91%以上。   相似文献   

18.
为了合理开发利用某含金硫化铜矿资源,开展了工艺矿物学和选矿综合利用试验研究。研究显示,矿石中主要有价元素铜品位为0.57%,伴生元素金品位为1.56 g/t;铜主要以黄铜矿的形式存在,金主要以自然金和银金矿的形式赋存,其载体矿物多为黄铁矿和黄铜矿。以YZ-05为捕收剂,采用“铜金硫混合浮选—铜硫分离—硫精矿再磨—金硫分离”的分选试验流程,闭路试验得到了铜精矿、金精矿和硫精矿,其中铜精矿Cu品位为19.57%、回收率88.7%,Au品位为36.93 g/t、回收率65.5%,Ag品位为61.00 g/t,回收率46.70%;金精矿Au品位42.27 g/t、回收率21.1%金综合回收率为86.6%;硫精矿中S品位为48.24%,回收率为69.70%。该研究为此矿石的综合回收利用提供了技术依据。  相似文献   

19.
某铅锌矿铅锌品位低、部分方铅矿与闪锌矿嵌布关系复杂,(含)银矿物种类多、可浮性参差不齐,给铅、银的回收带来困难。经过多方案比较,铅浮选采用"阶段磨矿(原矿粗磨、铅粗精矿再磨)―阶段选别"工艺进行选别,试验采用石灰+硫酸锌组合抑制黄铁矿和闪锌矿,乙硫氮和松醇油作铅捕收剂和起泡剂。对含Pb 2.22%、Zn 1.97%和Ag 13.25g/t的原矿,闭路试验可获得铅精矿含Pb 65.17%、Zn 3.63%,铅回收率为96.31%;铅精矿含Ag 305.95g/t,银回收率为75.92%;在强化铅选别的同时,有效实现了银的综合回收。  相似文献   

20.
倪青青  高志  宋祖光 《金属矿山》2020,49(9):125-130
河南某低品位金矿具有嵌布粒度不均匀、粒级分布宽和脉石夹杂严重等特点,金矿物的回收困难。为提高金的回收率,在工艺矿物学的研究基础上进行了一系列的选矿试验研究工作。结果表明:①原矿主 要有用矿物为自然金,原矿金品位为1.39 g/t;银品位为3.35 g/t,可以作为伴生金属综合利用。次要金属矿物主要为黄铁矿,另含有少量的黄铜矿、磁铁矿、辉铋矿和方铅矿等,脉石矿物主要为石英、斜长石、绿 泥石、云母、白云石、方解石,其次含少部分角闪石。②金颗粒主要是以包裹金(占58.83%)形式存在,其次是裂隙金(占23.53%),粒间金占比较小(占17.65%),其中石英包裹金占19.11%。③在最佳的试验条件 下,采用重—浮联合工艺,经3次尼尔森重选、1次摇床精选,重选尾矿经“1粗2精2扫”浮选,最终可以获得重砂含金986.60 g/t、金回收率为50.42%及浮选精矿含金35.75 g/t、金回收率为41.57%。全流程金的总回 收率达到了91.99%,较好地完成了该矿区金矿物的回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号