首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
皖南某铁铜硫多金属矿中铁矿物以磁性铁为主,伴生有少量黄铜矿和黄铁矿,矿物嵌布关系复杂、粒度粗细不均。根据矿石性质,试验采用优先浮铜—铜尾浮硫—硫尾弱磁选铁的工艺流程,针对含Fe44.55%、Cu 0.26%、S 2.73%的原矿,获得了Fe品位67.56%、回收率86.94%的铁精矿,Cu品位19.44%、回收率84.69%的铜精矿以及S品位37.85%、回收率62.12%的硫精矿,该流程较好地回收了铁、铜、硫矿物,为同类矿石的选矿提供了借鉴。  相似文献   

2.
安徽某含铜铁矿石为典型的多金属伴生矿,矿物间共生密切,嵌布关系复杂。矿石中金属矿物主要为磁铁矿,少量黄铁矿、黄铜矿及磁黄铁矿等;非金属矿物主要为蛇纹石、透辉石及透闪石等。为综合回 收矿石中的有价组分,在条件试验的基础上,采用铜硫混合浮选—铜硫分离—混浮尾矿磁选的工艺流程处理该矿石,全流程试验最终可获得Cu品位22.18%、Cu回收率76.85%的铜精矿,S品位43.29%、S回收率45.71%、 Co品位0.43%、Co回收率45.04%的硫精矿,及Fe品位62.36%、Fe回收率93.09%、含S 0.18%的铁精矿。试验指标良好,伴生组分Co在硫精矿中有效富集,实现了有价金属的综合回收。  相似文献   

3.
云南河口铜矿石含Cu 0.59%、S 4.57%、Fe 26.98%,属伴生硫铁的低品位硫化铜矿石,铜、硫、铁在矿石中分别主要以黄铜矿、黄铁矿、磁铁矿形式存在,但有少部分黄铜矿与黄铁矿形成固熔体。采用铜硫混合浮选-铜硫分离浮选-浮选尾矿弱磁选工艺对该矿石进行综合回收铜、硫、铁的选矿试验,得到了铜品位为18.03%、铜回收率为93.07%的铜精矿,硫品位为52.02%、硫回收率为56.34%的硫精矿和铁品位为61.90%、铁回收率为27.38%的铁精矿,从而为该矿石的合理开发利用提供了技术依据。  相似文献   

4.
广东某铜硫矿原矿矿石组成复杂、含硫高,黄铁矿和磁黄铁矿含量高于40%,露天采矿导致矿石表面氧化程度较高,极易酸化,尾矿水pH3.酸性尾矿水回用于全流程,造成铜硫选矿指标偏低,铜精矿Cu品位低于18%,回收率低于70%.针对这一难题,研究出非碱性铜浮选新技术,2016年9月至2017年5月采用新技术后,对平均品位Cu 0.69%、S 18.48%的原矿,获得累计实际生产指标如下:铜精矿Cu品位18.22%,铜回收率81.94%;硫精矿S品位43.99%,硫回收率50.63%;磁硫精矿品位S29.43%、Fe 41.36%,硫回收率34.93%;总硫回收率85.56%.  相似文献   

5.
安徽某铜硫矿现场选矿工艺为"铜硫等可浮出快铜-中矿再磨-铜硫分离",得到的硫精矿产品品位不够理想,仅为41.43%,离要求的48%差距较大。针对这一情况,本文开展了选矿工艺试验研究,针对含Cu 0.85%、S 15.23%的原矿,采用"铜硫混浮粗精矿再磨脱脉石-铜硫分离"工艺流程,闭路试验最终获得铜精矿含Cu 17.41%、S 32.44%,Cu回收率86.46%;硫精矿含Cu 0.24%、S 48.95%、Fe 44.01%,S回收率60.78%。  相似文献   

6.
河南某钼矿石属于浸染状细晶型钼矿,矿石中Mo品位为0.12%、含Cu 0.04%、含S 2.32%,含量均较低,综合回收难度较大。为有效回收利用矿石中的有价金属,进行了选矿试验研究。工艺矿物学研究表明,矿石中的主要可回收的金属矿物为辉钼矿、黄铁矿和黄铜矿;矿石中的辉钼矿以细板片状、针柱状被石英包裹,粒度细小;黄铜矿与脉石矿物嵌布关系密切,粒径为0.02~0.05 mm;黄铁矿中常包含乳滴状黄铜矿或细粒磁黄铁矿,粒径为0.10~0.70 mm。基于矿石特性,选取实验室研制的辉钼矿捕收剂团聚油、铜抑制剂TY以及非硫化矿抑制剂EMY-01,采用"阶段磨矿浮选分离铜钼—铜钼分离尾矿浮选富集铜—选钼尾矿浮选硫"闭路试验流程,最终获得了Mo品位49.73%、Mo回收率91.17%的钼精矿,S品位50.75%、S回收率90.78%的优质硫精矿,以及Cu品位16.20%、Cu回收率36.45%的铜精矿,指标优异,实现了该细晶型钼矿中有用矿物的分离回收。  相似文献   

7.
对秘鲁某含Cu 0.12%、Au 0.12 g/t、S 2.60%、Fe 45.52%的金铜铁多金属矿石进行了选矿工艺优化试验研究。该矿石原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,提出采用铜硫等可浮—铜硫分离—难选硫强化浮选—浮选尾矿磁选回收铁的优化工艺流程。铜硫等可浮分选时,在无碱条件下采用选择性的铜捕收剂BK306将铜和部分易浮黄铁矿等硫化矿物浮出,并进行铜硫分离回收铜、金;然后采用活化剂和强力捕收剂强化浮选脱除矿石中的难浮硫化物;最后通过磁选从浮选尾矿中回收铁。该优化工艺既可实现矿石中铜、金等有价金属的高效回收和硫的脱除,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业直接获得含硫低、铁品质较好的铁精矿。闭路试验获得铜品位20.10%、金品位15.29 g/t、铜回收率68.42%、金回收率49.07%的铜精矿,硫品位30.78%、总硫回收率84.05%的硫精矿以及铁品位68.88%、含硫0.18%、铁回收率90.57%的铁精矿。与原工艺相比,优化工艺的铜精矿铜品位和铜回收率分别提高2.49和10.25个百分点,铜精矿中金品位和金回收率分别提高5.27 g/t和17.05个百分点,硫回收率提高1.78个百分点。实现了矿石中铜、金、硫、铁的高效综合回收。   相似文献   

8.
某铜硫矿富含黄铁矿和磁黄铁矿等硫铁矿物,占原矿矿物总量的38.413%,属于典型的高硫铜硫矿石。原铜硫生产工艺采用石灰用量大,铜生产指标不稳定。为了在较低碱度条件下提高该高硫铜硫矿石选矿指标,针对该矿石特点,研发了“铜硫等可浮—粗精矿再磨—铜硫分离”工艺和新型XC捕收剂,使铜粗选p H降至8以下。最终,采用石灰作铜调整剂、XC捕收剂作铜捕收剂、硫酸铜作硫调整剂、丁基黄药作硫捕收剂,在原矿磨矿细度为-0.074mm占66%、粗精矿再磨细度为-0.045 mm占71%条件下,针对含Cu 0.92%、S 16.84%的原矿,闭路试验获得铜品位19.57%、铜回收率85.56%的铜精矿,硫品位42.02%、硫回收率45.58%的硫精矿1和硫品位37.10%、硫回收率29.96%的硫精矿2,为该矿山的选矿工艺优化提供了技术支持。  相似文献   

9.
为了合理开发利用某含金硫化铜矿资源,开展了工艺矿物学和选矿综合利用试验研究。研究显示,矿石中主要有价元素铜品位为0.57%,伴生元素金品位为1.56 g/t;铜主要以黄铜矿的形式存在,金主要以自然金和银金矿的形式赋存,其载体矿物多为黄铁矿和黄铜矿。以YZ-05为捕收剂,采用“铜金硫混合浮选—铜硫分离—硫精矿再磨—金硫分离”的分选试验流程,闭路试验得到了铜精矿、金精矿和硫精矿,其中铜精矿Cu品位为19.57%、回收率88.7%,Au品位为36.93 g/t、回收率65.5%,Ag品位为61.00 g/t,回收率46.70%;金精矿Au品位42.27 g/t、回收率21.1%金综合回收率为86.6%;硫精矿中S品位为48.24%,回收率为69.70%。该研究为此矿石的综合回收利用提供了技术依据。  相似文献   

10.
对国外某铜铋硫多金属矿,采用铜、铋、硫顺序优先浮选的工艺流程,获得铜精矿中Cu品位33.18%、Cu回收率95.91%;铋精矿中Bi品位53.11%、Bi回收率85.01%;硫精矿中S品位44.83%、S回收率69.11%的良好指标。为开发利用该类型多金属矿石提供了技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号