首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
攀钢钛精矿制取富钛料新工艺的研究   总被引:5,自引:0,他引:5  
针对攀钢钛精矿应用预热球团技术和回转窑直接还原技术 ,借助于添加剂的催化作用 ,使钛精矿中铁氧化物充分还原并促使铁晶粒长大 ,实现了Fe/Ti在选矿过程中高效分离 ,成功地开发了钛精矿制取富钛料的新工艺。扩大试验结果表明 ,在添加剂KS用量 5 %、粘结剂用量 1%情况下 ,球团经 70 0℃预热 15min后 ,在迥转窑中还原。其适应工艺参数为高温还原温度 110 0℃ ,高温还原时间≥ 2 10min ,C/Fe为 2 2左右 ,填充率 2 0 %左右 ,所得钛精矿金属化球团的金属化率 >92 %,经破碎、磨矿、磁选 ,得到磁性产品TFe >81%,回收率 >86 %,富钛料TiO2 >74 %,回收率 >90 %  相似文献   

2.
微波还原越南钛精矿制备初级富钛料新工艺研究   总被引:3,自引:0,他引:3  
采用微波谐振腔法测定了焦炭和越南钛精矿混合物料的吸波特性,并研究了焦炭配入钛精矿不同比例时与微波场内热源强度P的关系,测试结果为:焦炭和钛精矿最佳配比为10%。同时还进行了微波加热还原钛精矿制备富钛料的试验研究,结果表明:在碳质还原剂采用焦炭,含量为10%;以硅酸钠为粘结剂,用量为4%;添加剂为A,用量为5%;还原温度为1150℃;还原时间为1.5h的条件下,金属化球团还原产品的TiO2品位为48.85%,初级富钛料品位达70.57%。  相似文献   

3.
对钛磁铁矿球团预还原进行实验研究, 考察实验预还原温度、球团配碳量和球团配料碱度对金属化率的影响。研究结果表明: 钛磁铁矿含碳球团配碳量以C/O为1.2最佳, 不符合此配比均会导致达到最佳还原速率的时间增加; 在钛磁铁矿含碳球团中加入合适的CaO可有效促进其预还原, 在T=1 300 ℃、C/O=1.2、CaO/SiO2=1.3的实验条件下, 球团金属化率可在15 min内达到峰值, 但过量CaO会成为预还原阻力; 低于900 ℃预还原温度下, 钛磁铁矿的煤基直接还原则难以实现。  相似文献   

4.
以钛磁铁矿、煤粉和氧化钙为原料, 研究了矿粉粒度、加水量以及制球压力对球团落下强度、抗压强度的影响, 确定了最佳制球条件。根据铁矿石的直接还原和熔分原理, 研究了热量和金属化率对含碳球团熔分的影响。900 ℃以下, 球团金属化率极低, 只有热量对熔分产生影响; 1 000 ℃以上, 球团金属化率较高, 热量和金属化率共同对熔分产生影响。钛磁铁矿含碳球团的最佳制球条件为: 粒度0.075~0.106 mm, 加入水量8%, 制球压力4 MPa。通过对预还原1 000~1 300 ℃的球团进行熔分试验分析发现, 随预还原温度升高, 球团金属化率提高, 熔分时间变短。  相似文献   

5.
针对印尼钒钛海砂选矿后的精矿,采用转底炉直接还原—电炉熔分工艺,先后完成了小型基础试验研究和中试试验。得到最佳的条件是,m(海砂精矿):m(兰炭):m(膨润土):m(有机粘结剂)=100:25:3:1,含碳球团3层(54 mm),还原温度1 260℃,还原时间30 min,中试得到球团平均金属化率88.63%,球团中剩碳4.81%。将金属化球团热装入300 kVA的直流电炉进行冶炼,得到含钒铁水,铁水中铁品位96.25%,钒品位0.443%,铁与钒回收率分别为99.64%和88.96%,炉渣中TiO2品位38.86%,钛回收率为98.95%。结果表明,转底炉直接还原—电炉熔分处理海砂精矿技术上可行。   相似文献   

6.
以陕西某地钒钛磁铁矿金属化球团为研究对象,基于"磨矿磁选-预酸浸"处理技术,研究了联合处理工艺下钛的富集规律,利用扫描电子显微镜(SEM)和X射线电子衍射仪(XRD)等表征分析了实验前、后样品及富钛料成分和物相组成,确定了"磨矿磁选-预酸浸"联合工艺下适宜的钛富集工艺参数。结果表明,采用"磨矿磁选-预酸浸"联合工艺技术可以成功实现钛的富集;最佳工艺参数为磨矿粒度74~106μm,磁选强度80 m T,浸出剂盐酸初始浓度4.5 mol/L,浸出温度60℃。在此工艺条件下,得到的富钛料中Ti O2品位达80%以上,可直接作为后续提钛工艺原料。  相似文献   

7.
针对云南钛铁精矿的物相组成,提出了内配还原剂并辅加添加剂、粘结剂混磨制团进行固态还原,磨选分别获得还原铁粉和尾渣,尾渣酸浸制备富钛料的工艺;重点讨论还原时间、还原剂配比、还原温度、添加剂配比、磁选强度对还原铁粉指标的影响;在固定还原-磨选制度,讨论酸浓度、酸浸时间对富钛料指标的影响。通过试验,获得了最佳的工艺参数:还原剂配比10%、添加剂配比5.0%、粘结剂配比1%,还原温度1210℃,还原时间3 h;磨选工艺参数:磨矿细度为+380μm 10%、150~380μm 60%、150μm 30%,磁选强度64 kA/m;浸出工艺参数:硫酸浓度20%、液固比4:1、浸出温度为95℃、浸出时间为3 h、搅拌速度为250 r/min。在此工艺条件下,还原铁粉全铁为96.01%,富钛料中二氧化钛含量为76.94%。该工艺流程简单,钛铁得到有效利用,还原铁粉可用于湿法冶金的还原剂,富钛料为优质钛白原料,为钛铁精矿综合利用提供借鉴作用。  相似文献   

8.
针对云南钛铁精矿的物相组成,提出了内配还原剂并辅加添加剂、粘结剂混磨制团进行固态还原,磨选分别获得还原铁粉和尾渣,尾渣酸浸制备富钛料的工艺;重点讨论还原时间、还原剂配比、还原温度、添加剂配比、磁选强度对还原铁粉指标的影响;在固定还原-磨选制度,讨论酸浓度、酸浸时间对富钛料指标的影响。通过试验,获得了最佳的工艺参数:还原剂配比10%、添加剂配比5.0%、粘结剂配比1%,还原温度1210℃,还原时间3 h;磨选工艺参数:磨矿细度为+380μm 10%、150~380μm 60%、150μm 30%,磁选强度64 kA/m;浸出工艺参数:硫酸浓度20%、液固比4:1、浸出温度为95℃、浸出时间为3 h、搅拌速度为250 r/min。在此工艺条件下,还原铁粉全铁为96.01%,富钛料中二氧化钛含量为76.94%。该工艺流程简单,钛铁得到有效利用,还原铁粉可用于湿法冶金的还原剂,富钛料为优质钛白原料,为钛铁精矿综合利用提供借鉴作用。  相似文献   

9.
对印尼钒钛铁精矿和攀枝花红格钒钛铁精矿进行了直接还原对比试验研究,对比试验结果表明:印尼钒钛铁精矿造球性能远远好于攀枝花红格的钒钛铁精矿,能够满足工业生产过程的运输要求。印尼钒钛铁精矿含碳球团在还原温度1350℃,还原15 min条件下金属化率可以达到90%左右,金属化球团残碳量为6%,可以满足后续熔分的要求。经过再磨再选后,TiO_2的含量可以达到12%左右,经过直接还原-熔分后富集的熔分钛渣TiO_2的品味理论上能达到48%左右,可以作为硫酸法钛白的原料。研究表明,印尼钒钛铁精矿非常适合采用直接还原-电炉熔分工艺进行处理,其Fe,V,Ti等有益元素能够得到很好的回收利用。相比于攀枝花红格钒钛铁精矿,印尼钒钛铁精矿由于选矿工艺简单,成本低廉,比攀枝花红格钒钛铁精矿更具市场竞争力。  相似文献   

10.
以低钛高铬钛铁矿为原料生产高品位钛渣,研究了还原工艺、还原剂用量、添加剂用量等对钛铁矿还原的影响。实验结果表明,以冶金焦为还原剂,采用两段还原工艺,低温段1 300 ℃下进行铁还原,高温段1 750 ℃下进行铬还原,冶金焦用量为理论量的1.21倍,添加剂碳酸钠用量为1%,还原得到的高钛渣中氧化铬含量0.75%,钛富集率达96.41%。  相似文献   

11.
以河北承德某铁品位为61.08%,TiO2品位为7.66%的钒钛磁铁精矿为研究对象,进行了钒钛磁铁精矿深度还原-磁选试验研究。考察了还原温度、还原时间、C/O摩尔比、CaCO3添加量对还原产物和分选指标的影响。在还原温度为1350℃、还原时间120min、C/O摩尔比2.5、CaCO3添加量为16%、磁选场强为85mT的条件下,可以得到全铁品位为87.19%、铁回收率为82.62%的磁性产品和TiO2品位18.76%、TiO2回收率为79.40%非磁性产品。由还原产物的金属化率与XRD分析得知,钛磁铁矿向铁氧化物、钛氧化物和金属铁的转化较难发生,适当增加CaCO3的用量,能促进钛磁铁矿向CaTiO3、铁氧化物和金属铁的转化。   相似文献   

12.
钒钛磁铁精矿铁钒钛综合利用新流程   总被引:4,自引:0,他引:4  
对攀西地区太和铁矿所产的钒钛磁铁精矿,采用冷固球团直接还原—磨矿磁选的新流程成功实现了Fe/V、Ti的有效分离。还原前铁精矿品位为TFe52.47%,TiO213.42%,V2O50.595%,经还原—分选后,磁性产物品位为TFe91.25%(ηFe98.63%)、TiO24.21%,V2O50.22%,铁回收率为92.24%,经压团后可作为电炉炼钢的优质炉料;非磁性物品位TFe16.35%、TiO245.74%、V2O51.94%,V2O5及TiO2回收率分别为82.65%和80.88%,可作为提钒钛的优质原料或直接作为钛精矿销售,钒钛回收率分别比传统长流程提高18%和80%。实现Fe/V、Ti有效分离的关键在于采用冷固球团直接还原专利技术及球团内添加高效添加剂。  相似文献   

13.
为了探究通过提高磨矿细度降低河北柏泉磁选铁精矿钛含量的可行性,采用搅拌磨细磨(超细磨)-弱磁选工艺对试样进行降钛研究,在磨矿细度d90为34.7 μm,弱磁选磁场强度为83.6 kA/m的条件下,铁精矿TFe品位可由63.39%增加到65.48%,TFe品位达到一级铁精粉要求,且TFe回收率为97.85%,但铁精矿中杂质TiO2含量仅能降低1.04个百分点。通过XRD分析以及工艺矿物学分析查明,试样中钛主要存在于钛磁铁矿中;搅拌磨细磨(超细磨)-弱磁选工艺可以脱除铁精矿中的钛铁矿和钛赤铁矿,但是钛磁铁矿与磁铁矿属于类质同象,物理化学性质非常相近,难以通过磁选分离,这是该铁精矿的钛元素难以大量脱除的原因。研究结果表明,此类岩浆岩型高钛铁精矿品质较优,但钛不能通过选矿脱除,可用作其他低钛铁精粉高炉冶炼的配料。  相似文献   

14.
陈达  闫武 《矿产综合利用》2012,(1):21-23,45
简述了Windimurra钒钛磁铁矿主要金属元素的赋存、主要矿物组成及矿物含量。磁选条件试验确定了该矿的试验磁场强度(磁选粗选、扫选磁场强度为280kA/m、350kA/m)和粒度(-0.5mm),并进行了一粗一扫一精、扫选精矿同精选尾矿合并后再磁选流程的闭路试验,最终获得了产率为41.93%,TFe、TiO2、V2O5品位分别为52.14%、18.52%、1.04%,TFe、TiO2、V2O5回收率分别为72.26%、83.30%、82.43%的钒(铁)精矿,对钛磁铁矿(包括钛磁赤铁矿、钛赤铁矿和钛磁铁矿)和钛铁矿矿物的回收率分别为84.32%、84.85%,能有效地回收该资源中的铁、钛、钒。  相似文献   

15.
以印尼某海滨钛磁铁矿为原料, 煤泥作还原剂, 研究了煤泥种类及用量、添加剂用量和直接还原焙烧过程中的焙烧时间、焙烧温度等对铁产品TFe品位与回收率、TiO2含量的影响。结果表明, 煤泥可代替煤粉作还原剂;通过煤泥与添加剂的共同作用, 能够达到降低最终直接还原铁中钛含量的目的。在煤泥TJ用量18%、添加剂YSE用量8%、YHG用量3%, 1 250 ℃下焙烧60 min时, 得到的焙烧产物经过两段磨矿两段磁选, 最终铁产品中全铁品位达92.72%, 回收率达91.93%, TiO2含量降至0.72%。  相似文献   

16.
攀西地区是我国最大的钒钛磁铁矿产区,钒钛磁铁矿石中除了主要元素铁、钒、钛以外,还伴生有硫资源储量6 000万t、钴资源储量90万t,具有很高的工业利用价值。当前攀钢矿业公司选矿厂对钒钛磁铁矿的选矿工艺流程是“阶段磨矿—弱磁选铁—选铁尾矿强磁选钛—强磁选钛粗精矿浮选脱硫—浮选钛铁矿”得到铁精矿、钛精矿和硫(钴)精矿,仅在钛精矿浮选脱硫阶段浮选回收得到硫(钴)精矿,因为钴品位<0.3%,钴市场价格高时作为硫钴精矿销售,钴市场价格低时只能作为硫精矿销售,造成了钴资源的浪费。开展了弱磁选工序前浮选回收硫钴的试验研究,目标是硫化矿物的早收快收集中收。实验室在磨矿细度-0.074 mm占45%,硫酸铜用量250 g/t、异戊黄药用量150 g/t、3#起泡剂用量30 g/t,一段浮选得到产率14.33%,硫品位3.11%、钴品位0.06%、镍品位0.03%、铜品位0.10%,硫回收率68.14%、钴回收率35.12%、镍回收率47.23%、铜回收率43.12%的粗硫钴精矿。探讨了实验室球磨机磨矿浮选一体机和浅槽快速浮选机,并开展了验证试验,认为浅槽快速浮选机是研究发展方向。  相似文献   

17.
某低品位钒钛磁铁矿选铁尾矿选钛试验研究   总被引:2,自引:0,他引:2  
某低品位钒钛磁铁矿选铁尾矿含TiO27.88%,TiO2分布率71.83%。针对该尾矿的性质,采用强磁预选—浮选联合工艺,获得了含TiO248.20%、浮选作业回收率80.65%(原矿回收率37.73%)的钛精矿,该选钛指标较为理想。  相似文献   

18.
基于还原焙烧的某海滨钛磁铁矿的钛铁分离   总被引:1,自引:0,他引:1  
为了高效分离印尼某高铁钛、低硫磷海滨钛磁铁矿中的钛铁,实现资源的充分利用,采用直接还原焙烧-磨矿-弱磁选工艺对该试样进行了还原焙烧工艺技术条件研究,并对确定条件下的焙烧产物进行了不同磨矿细度下的钛铁分离验证试验。结果表明,添加剂NCS对铁还原和钛铁分离有促进作用;在烟煤A用量(与试样的质量比)为30%、NCS用量为11%、还原焙烧温度为1 250 ℃、还原焙烧时间为60 min、磨矿细度为-43 μm占6902%、弱磁选磁场强度为151 kA/m的情况下,可获得TFe品位为9374%、回收率为9591%、TiO2品位为045%的还原铁粉,实现了钛铁的高效分离;钛在尾矿中的富集为后续回收钛创造了条件。  相似文献   

19.
攀西红格铁矿随着开采深度的增加,采出矿石辉长岩、辉石岩含量逐渐降低,而橄辉岩含量逐渐提高,导致企业采用原工艺无法获得合格的铁精矿产品。为给红格中深部难选橄辉岩型钒钛磁铁矿石合理选矿工艺确定提供依据,在对矿石性质分析的基础上,进行了选铁试验研究。结果表明:矿石铁品位为14.75%、TiO2含量为5.59%,以钛磁铁矿形式存在的铁占总铁的55.05%;矿石破碎至-3 mm经湿式预选抛尾,可以获得铁品位为21.05%、回收率为83.61%的预选精矿,抛除产率为41.12%、铁品位为5.91%的废石;预选精矿经磨矿-弱磁选-搅拌磨再磨-弱磁粗选-磁团聚重选机精选,可以获得铁品位为57.25%、回收率为46.54%的精矿,铁精矿TiO2含量为9.55%。试验结果为该类低品位橄辉岩型钒钛磁铁矿石的高效开发利用提供了技术依据。  相似文献   

20.
本选矿试验探讨了TFe品位11.66%、TiO2品位5.24%的含铁辉长岩中钛铁矿的选矿方法。通过试验,针对其铁钛矿物含量低且嵌布相对较细的特点,采用优先选钛的主体工艺,“弱磁 两段强磁 一粗五精”的流程,获得产率2.97%、TiO2品位47.00%、回收率28.66%的高钛、含钒的优质钛精矿。实现资源综合利用,为含铁辉长岩中钛铁矿回收利用提供了技术依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号