首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A program to study the effect of Sb, P, Sn and B on creep properties of four normalized and tempered 1.25 Cr-0.5 Mo steels at 538°C (1000°F) has been completed. Results show that even a combined addition of large amounts of Sb, P and Sn does not affect short time creep strength or ductility of the steel at 538°C (1000°F). Addition of B resulted in an increase or decrease of creep strength depending on the nature of the impurity species present, presumably due to B-impurity interactions. Regardless of the effect on creep strength, B additions caused sharp reductions in rupture ductility in all cases. Comparison of the present results on the four laboratory steels (100 pct bainite) with results of a previous study on a commercial steel (60 pct bainite + 40 pct ferrite) show that the effect of microstructure becomes negligible and rupture strength values of the various steels at 538°C (1000°F) approach each other at rupture times in excess of 104 h.  相似文献   

2.
The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.  相似文献   

3.
The new ferritic heat-resisting steels of 0.05C-10Cr-2Mo-0.10V-0.05Nb (Cb) composition with high creep rupture strength and good ductility have already been reported. The optimum amounts of V and Nb that can be added to the 0.05C-10Cr-2Mo steels and their effects on the creep rupture strength and microstructure of the steels have been studied in this experiment. The optimum amounts of V and Nb are about 0.10 pct V and 0.05 pct Nb at 600 °C for 10,000 h, but shift to 0.18 pct V and 0.05 pct Nb at 650 °C. Nb-bearing steels are preferred to other grades on the short-time side, because NbC precipitation during initial tempering stages delays recovery of martensite. On the long-time side, however, V-bearing steels have higher creep rupture strength. By adding V to the steels, electron microscopic examination reveals a stable microstructure, retardation during creep of the softening of tempered martensite, fine and uniform distribution of precipitates, and promotion of the precipitation of Fe2Mo.  相似文献   

4.
A program to study the effect of Sb, P, Sn and B on creep properties of four normalized and tempered 1.25 Cr−0.5 Mo steels at 538°C (1000°F) has been completed. Results show that even a combined addition of large amounts of Sb, P and Sn does not affect short time creep strength or ductility of the steel at 538°C (1000°F). Addition of B resulted in an increase or decrease of creep strength depending on the nature of the impurity species present, presumably due to B-impurity interactions. Regardless of the effect on creep strength, B additions caused sharp reductions in rupture ductility in all cases. Comparison of the present results on the four laboratory steels (100 pct bainite) with results of a previous study on a commercial steel (60 pct bainite + 40 pct ferrite) show that the effect of microstructure becomes negligible and rupture strength values of the various steels at 538°C (1000°F) approach each other at rupture times in excess of 104 h.  相似文献   

5.
The influence of microstructural variations on the fracture toughness of two tool steels with compositions 6 pct W-5 pct Mo-4 pct Cr-2 pct V-0.8 pct C (AISI M2 high-speed steel) and 2 pct W-2.75 pct Mo-4.5 pct Cr-1 pct V-0.5 pct C (VASCO-MA) was investigated. In the as-hardened condition, the M2 steel has a higher fracture toughness than the MA steel, although the latter steel is softer. In the tempered condition, MA is softer and has a higher fracture toughness than M2. When the hardening temperature is below 1095 °C (2000 °F), tempering of both steels causes embrittlement,i.e., a reduction of fracture toughness as well as hardness. The fracture toughness of both steels was enhanced by increasing the grain size. The steel samples with intercept grain size of 5 (average grain diameter of 30 microns) or coarser exhibit 2 to 3 MPa√m (2 to 3 ksi√in.) higher fracture toughness than samples with intercept grain size of 10 (average grain diameter of 15 microns) or finer. Tempering temperature has no effect on the fracture toughness of M2 and MA steels as long as the final tempered hardness of the steels is constant. Retained austenite has no influence on the fracture toughness of as-hardened MA steel, but a high content of retained austenite appears to raise the fracture toughness of as-hardened M2 steel. There is a temperature of austenitization for each tool steel at which the retained austenite content in the as-quenched samples is a maximum. The above described results were explained through changes in the microstructure and the fracture modes. CHONGMIN KIM, formerly with Climax Molybdenum Company of Michigan, Ann Arbor, MI.  相似文献   

6.
The mechanical properties of a new ferritic stainless steel consisting essentially of 29 pct Cr, 4 pct Mo, 2 pct Ni (29-4-2) have been evaluated. The mechanical properties of the alloy are dependent on the thermomechanical processing and the final heat treatment conditionsi.e., both annealing temperature and cooling rate from the anneal. The alloy has excellent toughness, ductility and strength at room temperature when fast cooled from elevated temperatures. Slow cooling from elevated temperatures results in a degradation of impact resistance and an increase in strength. The alloy is subject to two major forms of embrittlement. One form results from the precipitation of intermetallic compounds in the temperature range 704°C (1300°F) to 954°C (1750°F) while the other results from the classical phenomenon called 475°C (885°F) embrittlement in the temperature range 399°C (750°F) to 510°C (950°F). Degradation of room temperature impact resistance occurs faster after the high temperature type of embrittlement and failure is characterized by an intergranular fracture mode. Embrittlement after exposure to 475°C (885°F) results in a slower degradation in toughness and results in failure by a transgranular cleavage mode. Impact resistance and tensile ductility are also decreased by exposure to 593°C (1100°F); however, to a lesser degree than 475°C (885°F) or 760°C (1400°F) exposure. The alloy deforms by slip or twinning depending on the metallurgical condition of the material. Deformation by twinning rather than slip is not manifested by a reduction in either toughness or ductility. Exposure to 482°C (900°F) promotes deformation by twinning whereas exposure to 760°C (1400°F) does not.  相似文献   

7.
Tensile and impact properties were determined for a steel (3 wt pct Cr-1.5 wt pct Mo-0.1 wt pct V-0.1 wt pct C) considered a candidate for elevated-temperature pressure-vessel applications. The steel was tested in two heat-treated conditions: normalized and tempered and quenched and tempered for various tempering conditions. Similar tempering treatments for the quenched and the normalized steels led to similar strengths. However, for the lowest tempering parameter used, the impact properties for the quenched-and-tempered steel exceeded those for the normalized-and-tempered steel, resulting in an excellent ductile-brittle transition temperature (-70 °C) and upper-shelf energy (225 J) for the quenched-and-tempered steel at a high strength (770 MPa ultimate tensile strength). Further tempering reduced the strength for the steel in both heat-treated conditions. The impact properties of the quenched steel were only slightly changed by further tempering, but those for the normalized steel improved, eventually equaling those for the quenched-and-tempered steel. The difference in impact properties after the two heat treatments was attributed to a difference in bainite microstructures.  相似文献   

8.
The 885odgF (475°C) embrittlement of seven heats of chromium steels was investigated: four vacuum-melted heats with C + N < 0.008 pct and 14 pct Cr, 14 pet Cr-2 pet Mo, 18 pct Cr, or 18 pet Cr-2 pet Mo, and three air-melted heats with C + N > 0.09 pet and 18 pet Cr, 18 pct Cr-2 pet Mo, or 18 pet Cr-2 pet Mo-0.5 pct Ti. The steels were heated at 600° (316°), 700° (371°), 800° (427°), 900° (482°), and 1000°F (538°C) for various times up to 4800 h and the influence of this aging was investigated by hardness measurements, impact tests, and electron metallography. It was demonstrated that the embrittlement due to 885°F (475°C) exposure was caused by precipitation of a chromium-rich α phase on dislocations. The nucleation rate of α was calculated with the aid of Becker’s theory and the results were used to extrapolate experimental data obtained in this study. After an exposure of about 1000 h at 1000°F (538°C), a decrease in room temperature toughness was observed for all steels investigated. The decrease in toughness was not caused by immobilization of dislocations by α, but by precipitation of carbonitrides.  相似文献   

9.

The tensile fracture behavior of oxide dispersion strengthened 18Cr (ODS-18Cr) ferritic steels milled for varying times was studied along with the oxide-free 18Cr steel (NODS) at 25, 200, 400, 600, and 800 °C. At all the test temperatures, the strengths of ODS–18Cr steels increased and total elongation decreased with the duration of milling time. Oxide dispersed 18Cr steel with optimum milling exhibited enhanced yield strength of 156 pct at room temperature and 300 pct at 800 °C when compared to oxide-free 18Cr steel. The ductility values of ODS-18Cr steels are in the range 20 to 35 pct for a temperature range 25 to 800 °C, whereas NODS alloy exhibited higher ductility of 37 to 82 pct. The enhanced strength of ODS steels when compared to oxide-free steel is due to the development of ultrafine grained structure along with nanosized dispersion of complex oxide particles. While the pre-necking elongation decreased with increasing temperature and milling time, post-necking elongation showed no change with the test temperature. Fractographic examination of both ODS and NODS 18Cr steel fractured tensile samples, revealed that the failure was in ductile fracture mode with distinct neck and shear lip formation for all milling times and at all test temperatures. The fracture mechanism is in general followed the sequence; microvoid nucleation at second phase particles, void growth and coalescence. The quantified dimple sizes and numbers per unit area were found to be in linear relation with the size and number density of dispersoids. It is clearly evident that even nanosized dispersoids acted as sites for microvoid nucleation at larger strains and assisted in dimple rupture.

  相似文献   

10.
The homogenization of Ni in powder metal (PM) steel compacts is usually difficult even after high-temperature sintering at 1250°C. An earlier study by the authors demonstrated that this problem can be alleviated through the addition of 0.5 wt pct Cr in the form of stainless steel powders. To further improve the microstructure and mechanical properties of Ni-containing PM steels and to understand the mechanisms, an attempt was made in this study using the Fe-3Cr-0.5Mo prealloyed powder as the base material. The results showed that the distribution of the Ni additives was significantly improved. As a result, the tensile strength of the Fe-3Cr-0.5Mo-4Ni-0.5C compact sintered at 1250°C reached 1323 MPa. The elongation was higher than 1 pct. These sinter-hardened properties, which were attained using a slow furnace cooling rate, were comparable to those of the sinter-hardened alloys reported in the literature using accelerated cooling and were equivalent to those of the best quenched-and-tempered alloys registered in the Metal Powder Industries Federation (MPIF) standards. These improvements were attributed to the positive effect of Cr addition on alloy homogenization due to the reduction of the repelling effect between Ni and C, as was demonstrated through the thermodynamic analysis using the Thermo-Calc program.  相似文献   

11.
Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V dual-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of residual stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.  相似文献   

12.
In the current study, the effects of tungsten (W) addition on the microstructure, hardness, and room/low [223 K and 173 K (?50 °C and ?100 °C)] temperature tensile properties of microalloyed forging steels were systematically investigated. Four kinds of steel specimens were produced by varying the W additions (0, 0.1, 0.5, and 1 wt pct). The microstructure showed that the addition of W does not have any noticeable effect on the amount of precipitates. The precipitates in W-containing steels were all rich in W, and the W concentration in the precipitates increased with the increasing W content. The mean sizes of both austenite grains and precipitates decreased with the increasing W content. When the W content was equal to or less than 0.5 pct, the addition of W favored the formation of allotriomorphic ferrite, which subsequently promoted the development of acicular ferrite in the microalloyed forging steels. The results of mechanical tests indicated that W plays an important role in increasing the hardness and tensile strength. When the testing temperature was decreased, the tensile strength showed an increasing trend. Both the yield strength and the ultimate tensile strength obeyed an Arrhenius type of relation with respect to temperature. When the temperature was decreased from 223 K to 173 K (from ?50 °C to ?100 °C), a ductile-to-brittle transition (DBT) of the specimen with 1 pct W occurred. The addition of W favored a higher DBT temperature. From the microstructural and mechanical test results, it is demonstrated that the addition of 0.5 pct W results in the best combination of excellent room/low-temperature tensile strength and ductility.  相似文献   

13.
Test steels containing 0.25 pct C, 1.0 pct Ni, 3.0 to 4.5 pct Cr, 0.8 to 2.0 pct Mo, 0.12 pct V and two levels of such impurities as phosphorus, tin and antimony, quenched and tempered to a 825 MPa (120 ksi) minimum yield strength level, have been examined for temper-embrittlement susceptibility. The susceptibility is influenced by a combination of chromium and molybdenum contents rather than by contents of individual elements. The susceptibility in steels with 3 pct Cr-0.8 pct Mo and 4.5 pct Cr-0.8 to 1.6 pct Mo was significantly lower than that of a 3.5Ni-1.7Cr-0.5Mo-0.1V steel at the same impurity level.  相似文献   

14.
The influence of operating temperature on in-service degradation of mechanical properties of high temperature stream turbine components has been investigated. Material samples for this study were taken from a Cr-Mo-V rotor and several 2.25Cr-1Mo cast steel components which had operated over 200,000 hours. The test results revealed that the degree of in-service degradation of strength, toughness, and the fracture appearance transition temperature of both steels were very sensitive to the service temperature. Both steels softened only when they were exposed at a temperature greater than 454°C (850°F) and the degree of softening increased with further increase in service temperature. In Cr-Mo-V steel, the loss in strength was accompanied by an improvement in ductility and toughness. Despite softening of 2.25Cr-1Mo steel in service, elevated temperature exposure resulted in a marked decrease in ductility and toughness. The loss of toughness in this steel was in part irreversible. In contrast, a severe increase in fracture appearance transition temperature, due to reversible temper embrittlement, occurred in both steels at a service temperature of around 427°C (800°F), but not at the highest service temperature. In fact, the Cr-Mo-V steel did not temper embrittle as a result of service exposure at the highest operating temperature investigated. These results are rationalized in terms of changes in microstructure and grain boundary chemistry that occur in service as a function of operating temperature.  相似文献   

15.
Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V d11Al-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of resid11Al stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated. This paper is based on a presentation made at the “pcter G. Winchell Symposium on Tempering of Steel” held at the Louisville Meeting of The Metallurgical Society of AIME, October 12-13, 1981, under the sponsorship of the TMS-AIME Ferrous Metallurgy and Heat Treatment Committees.  相似文献   

16.
The tensile strength and ductility of continuously cast steels have been determined for temperatures above 800°C. The results show that the maximum stress decreases progressively until close to the melting temperature, then drops to zero. The maximum stress is essentially independent of residual and solute concentrations, cast structure and prior heat treatment. Above 1250°C the steels are ductile to near the melting temperature. Below 1250°C the ductility decreases, the amount of decrease, and the temperature range over which the change occurs depending on composition, cast structure and heat treatment. The ductility decreases at higher temperatures with high sulfur and phosphorus levels in the steel. Increasing sulfur from 0.010 to 0.025 pct in laboratory cast steels markedly decreases the ductility. Small grain size also tends to reduce ductility. Preheating the steel to near its melting point prior to testing markedly reduces the ductility below 1250°C in most steels. It is postulated that this is due to local remelting of solute rich pockets of material which extend along the grain boundaries. The extended material is brittle at lower temperatures reducing the ductility of the steel.  相似文献   

17.
The creep rupture test has been carried out for 18Cr-10Ni-0.1 wt pct C stainless steels bearing individually Ti, Nb(Cb), and V, followed by the microstructural study. The highest value of 700°C-104 h rupture strength in a titanium and niobium series (the steel containing various amounts of titanium and niobium, respectively) has been obtained at Ti/C and Nb/C atomic ratio of 0.8 and 0.2 to 0.4, respectively. On the other hand, in a vanadium series, the creep rupture strength of the steel showed its maximum at V/C atomic ratio of about unity in the testing at the temperature of 700° and 800°C, but at 600°C, the strength increases monotonically with vanadium content up to 1.53 wt pct. Such high strength in the steels con-taining proper amount of Ti, Nb, and V is related mainly with the fine distribution of M23C6 precipitates which is caused by the acceleration of nucleation due to the foregoing precipi-tation of a MC type carbide within the austenite grains. And it has been deduced that the solid solution strengthening effect of the vanadium contributes also to the remarkable in-crease in the rupture strength of the vanadium steel at 600°C.  相似文献   

18.
An alloy development program has been undertaken with the aim of identifying an Fe-Cr-Mn stainless steel with ferritic-martensitic microduplex phase balance of sufficient stability to produce moderate strength and ductility, good impact resistance and acceptable as-welded properties. A microduplex, low C and N, Ti stabilized composition of Fe-11.5 pct Cr-3 pct Mn has been found to provide a yield strength of ⋍550 MPa, a tensile strength of ≃650 MPa, tensile elongation of 20 pct, a CVN impact transition temperature of-115°C (at 0.33 cm gage) and good weldability as determined by bend, impact, and intergranular corrosion testing. The alloy possesses general corrosion resistance roughly comparable to T405 and T430 ferritic stainless steels. The impact resistance achieved with the mixture of ferrite and martensite is inconsistent with previous concepts of second phase toughening in microduplex alloys, with the mixture apparently being significantly tougher than either of its components in bulk form. J.R. WOOD formerly with Allegheny Ludlum Steel Corporation, Brackenridge, PA  相似文献   

19.
Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al–low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.  相似文献   

20.
Several alloys based on Fe-25Cr-6Al and Fe-25Cr-11Al (wt pct) with additions of yttrium, Al2O3, and Y2O3 have been prepared by mechanical alloying of elemental, master alloy and oxide powders. The powders were consolidated by extrusion at 1000°C with a reduction ratio of 36:1. The resulting oxide contents were all approximately either 3 vol pct or 8 vol pct of mixed Al2O3-Y2O3 oxides or of Al2O3. The alloys exhibited substantial ductility at 600°C: an alloy containing 3 vol pct oxide could be readily warm worked to sheet without intermediate annealing; an 8 vol pct alloy required intermediate annealing at 1100°C. The 3 vol pct alloys could be recrystallized to produce large elongated grains by isothermal annealing of as-extruded material at 1450°C, but the high temperature strength properties were not improved. However, these alloys, together with some of the 8 vol pct materials, could be more readily recrystallized after rod (or sheet) rolling; sub-stantially improved tensile and stress rupture properties were obtained following 9 pct rod rolling at 620°C and isothermal annealing for 2 h at 1350°C. In this condition, the rup-ture strengths of selected alloys at 1000 and 1100°C were superior to those of competitive nickel-and cobalt-base superalloys. The oxidation resistance of all the alloys was ex-cellent. F. G. WILSON and C. D. DESFORGES, formerly with Fulmer Re-search Institute  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号