首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
The microstructural evolutions of the cold rolled Fe-0.1C-5Mn steel during intercritical annealing were ex- amined using combined advanced techniques. It was demonstrated that intercritical annealing results in an ultrafine granular ferrite and austenite duplex structure in cold rolled 0.1C-5Mn steel. The strong partitioning of manganese and carbon elements from ferrite to austenite was found during intercritical annealing by scanning transmission elec- tron microscopy (STEM) and X-ray diffraction (XRD). Strong effects of boundary characters on the austenite for- mation were indicated by austenite fast nucleation and growth in the high angle boundaries but sluggish nucleation and growth in the low angle boundaries. The ultrafine grained duplex structure in 0.1C-5Mn was resulted from the the sluggish Mn-diffusion and the extra high Gibbs free energy of ferrite phase. Based on the analysis of the micro- structure evolution, it was pointed out that the intercritical annealing of the medium Mn steels could be applied to fabricate an ultrafine duplex grained microstructure, which would be a promising approach to develop the 3rd genera- tion austomobile steels with excellent combination of strength and ductility.  相似文献   

2.
A medium-Mn steel(0.2C5Mn)was processed by intercritical annealing at different temperatures(625 ℃ and 650 ℃).An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite laths was developed by austenite reverse transformation(ART)during intercritical annealing after forging and hot rolling.Ultrahigh ductility with a total elongation higher than 30% was achieved in the temperature range from-196 ℃ to 200 ℃,and high impact toughness no less than 200Jat-40 ℃ was obtained.Based on the analysis of microstructure and mechanical properties,it was found that the enhanced ductility was determined by the phase transformation effect of austenite(TRIP effect),while the delayed ductile to brittle transition was controlled by austenite stability.  相似文献   

3.
The Fe-0.21 C-2.2 Mn-0.49 Si-1.77 Al transformation induced plasticity(TRIP)-aided steel was heat treated at various austenitizing temperatures under both TRIP-aided polygonal ferrite type(TPF)and annealed martensite matrix(TAM)processes.The microstructure evolution and their effects on mechanical properties were systematically investigated through the microstructure observation and dilatometric analysis.The microstructure homogeneity is improved in TPF steel heated at a high temperature due to the reduced banded martensite and the increased bainite.Compared with the mechanical properties of the TPF steels,the yield strength and elongation of the TAM steels are much higher,while the tensile strength is lower than that of TPF steels.The stability of intercritical austenite is affected by the heating temperature,and thus the following phase transformation influences the mechanical properties,such as the bainite transformation and the precipitation of polygonal ferrite.Obvious dynamic bainite transformation occurs at TAM850,TAM900 and TAM950.More proportion of polygonal ferrite is found in the sample heated at 950°C.The bainite transformation beginning at a higher temperature results in the wider bainitic ferrite laths.The more proportion of polygonal ferrite and wide bainitic ferrite laths commonly contribute to the lower strength and better elongation.The uniform microstructure with lath-like morphology and retained austenite with high average carbon content ensures a good mechanical property in TAM850 with the product of strength and elongation of about 28 GPa·%.  相似文献   

4.
The continuous cooling transformation behavior, the effect of coiling temperature on microstructure and mechanical properties, and strengthening mechanisms of Ti microalloyed high strength hot strip steel were systematically investigated by thermal simulation testing machine, laboratory rolling mill, SEM and HR-TEM. The dynamic CCT curve was established. The results show that the austenite to ferrite and pearlite transformation takes place when the cooling rate is less than 1??/s. The austenite to bainite transformation accompanied with austenite to ferrite and pearlite transformation takes place when the cooling rate is in the range of 5 ??/s to 10 ??/s. The bainitic transformation temperature is about 600??. The amount of granular bainite decreases, while the amount of lath bainite increases with the increase of cooling rate in the range of 20??/s to 50??/s. Furthermore, the study on the effect of coiling temperature on the microstructure and mechanical properties of experimental steel has shown that the strength and plasticity of tested steel are improved with decreasing the coiling temperature. When the coiling temperature is 550?棬the experimental steel possesses optimal mechanical properties owing to the grain refinement and precipitation of nano-scale TiC particles. And the tensile strength, yield strength and elongation of tested steel were 742MPa, 683MPa and 22??5%, respectively.  相似文献   

5.
The process of “controlled rolling+relaxation+ultra fast cooling (UFC)”for high strength constructional steel with low yield ratio was presented.Microstructure and corresponding relationship with low yield ratio were in-vestigated.The results showed that the constructional steels with multiphase microstructure of bainitic ferrite,mar-tensite-austenite (M-A)and lath bainite were obtained through the creative process.The grain size decreased with the decrease in finish rolling temperature,which enhanced the strength by the grain refinement strengthening.The proper relaxation treatment promoted the bainitic ferrite lath width and the formation of blocky M-A constituent.In addition,both the tensile and yield strength increased with the decrease in finish rolling temperature and UFC final temperature,but the yield strength increased more significantly than tensile strength,which caused the increase in yield ratio.By using the process of “controlled rolling+relaxation+ultra fast cooling”,the excellent comprehensive mechanical properties of 780 MPa grade constructional steels of 12-40 mm in thickness were achieved.  相似文献   

6.
  The steels were rolled at 3 different finishing temperatures. The mechanical properties were tested by tensile tests. The results show that as finish rolling temperature decreases from 620 to 560 ℃ in ferrite region, the deep drawability of ferritic rolled P added high strength IF steels is improved, and r value rises from 114 to 137. Finish rolling temperature (FT) has less influence on other mechanical properties, such as yield strength, tensile strength and elongation. Microstructures of hot rolled and annealed steel sheets and precipitates of annealed steel sheets were also analyzed.  相似文献   

7.
Austempering of Hot Rolled SiMn TRIP Steels   总被引:1,自引:1,他引:1  
 The austempering after hot rolling in hot rolled Si Mn TRIP (transformation induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the holding duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33%, respectively).  相似文献   

8.
 The controlled cooling technology following hot rolling process is a vital factor that affects the final microstructure and mechanical properties of the hot-rolled transformation induced plasticity (TRIP) steels. In the present study, low alloy C-Si-Mn TRIP steel was successfully fabricated by hot rolling process with a 450 hot rolling mill. To maximize the volume fraction and stability of retained austenite of the steel, two different cooling methods (air-cooling and ultra-fast cooling “AC-UFC” and ultra-fast cooling, air-cooling and ultra-fast cooling “UFC-AC-UFC”) were conducted. The effects of the cooling method on the microstructure of hot-rolled TRIP steel were investigated via optical microscope, transmission electron microscope and conversion electron Mssbauer spectroscope. The mechanical properties of the steel were also evaluated by conventional tensile test. The results indicated that ferrite and bainite in the microstructure were refined with the cooling method of UFC-AC-UFC. The morphology of retained austenite was also changed from small islands distributing in bainite district (obtained with AC-UFC) to granular shape locating at the triple junction of the ferrite grain boundaries (obtained with UFC-AC-UFC). As a result, the TRIP steel with a content of retained austenite of 1152%, total elongation of 32% and product of tensile strength and total elongation of 27552 MPa·% was obtained.  相似文献   

9.
Steels of constant manganese and carbon contents with silicon content of 0.34%-2.26% were cast.The as-cast steels were then hot rolled at 1100 ℃ in five passes to reduce the cast ingot thickness from 80 to 4 mm, air cooled to room temperature and cold rolled to 2 mm in thickness. Dual phase microstructures with different volume fraction of martensite were obtained through the intercritical annealing of the steels at different temperatures for 15 min followed by water quenching. In addition to intercritical annealing temperature, silicon content also altered the volume fraction of martensite in dual phase steels. The partitioning of manganese in dual phase silicon steels was investigated using energy-dispersive spectrometer (EDS). The partitioning coefficient, defined as the ratio of the amounts of alloying element in the austenite to that in the adjacent ferrite, for manganese increased with increasing intercritical annealing temperature and silicon content of steels. It was also found that the solubility of manganese in ferrite and austenite decreased with increasing intercritical temperature. The results were discussed by the diffusivity and the solubility of manganese in ferrite and austenite existed in dual phase silicon steels.  相似文献   

10.
The thermal stability of retained austenite(RA)and the mechanical properties of the quenched and intercritical annealed 0.1C-5Mn steel with the starting ultrafine lamellar duplex structure of ferrite and retained austenite during tempering within the range from 200 to 500°C were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM)and tensile testing.The results showed that there was a slight decrease in the RA volume fraction with increasing tempering temperature up to 400°C.This caused a slight increase in the ultimate tensile strength(UTS)and a slight decrease in the total elongation(TE);thus,the product of UTS to TE(UTS×TE)as high as 31GPa·% was obtained and remained nearly unchanged.However,aportion of the RA began to decompose when tempered at 500°C and thus caused a~35% decrease of the RA fraction and a~16%decrease of the value of UTS×TE.It is concluded that the ultrafine lamellar duplex structure is rather stable and the excellent combination of strength and ductility could be retained with tempering temperature up to 400°C.Thus,thermal processes such as galvanization are feasible for the tested steel provided that their temperatures are not higher than 400°C.  相似文献   

11.
采用冷轧+两相区温轧退火(CR+WR+IA)热处理工艺,研究了两相区退火时间对超细晶铁素体与奥氏体中组织形貌演变、C和Mn元素配分行为以及力学性能的影响。结果表明,冷轧试验钢经两相区形变退火处理后,获得了由铁素体、残余奥氏体或新生马氏体组成的超细晶复相组织。在645℃随退火时间的延长,形变马氏体向逆相变奥氏体配分的C、Mn元素增多,C、Mn元素富集位置增加,同时富Mn区形变马氏体回复再结晶现象明显;伴随少量碳化物溶解,试验钢的屈服强度由741持续降低到325MPa。两相区退火10min时,试验钢力学性能最佳,此时抗拉强度达到最大值1141MPa,断后伸长率及均匀伸长率分别为236%和181%,强塑积达到26928MPa·%。  相似文献   

12.
采用γ单相区和γ+α双相区轧制并淬火工艺以及双相区再加热-淬火-碳配分(IQ&P)工艺,研究预处理组织对低碳钢室温状态多相组织特征及力学性能的影响规律.实验用低碳钢经两种工艺轧制并淬火处理,获得马氏体和马氏体+铁素体的预处理组织,再经双相区IQ&P工艺处理后均获得多相组织.马氏体预处理钢的室温组织由板条状亚温铁素体、块状回火马氏体以及一定比例的针状未回火马氏体和8.2%的针状残余奥氏体组成;马氏体+铁素体预处理钢由板条状亚温铁素体、块状和针状未回火马氏体以及14.3%的短针状或块状残余奥氏体组成.在相同的双相区IQ&P工艺参数下,预处理组织为马氏体的钢抗拉强度为770 MPa,伸长率为28%,其强塑积为21560 MPa·%;而预处理组织为马氏体+铁素体的钢抗拉强度为834 MPa,伸长率增大到36.2%,强塑积达到30190 MPa·%,获得强度与塑性的优良结合.   相似文献   

13.
Effect of warm- rolling and subsequent intercritical annealing time at 650?? on microstructure and mechanical properties of a medium- Mn steel 0. 1C- 5Mn was investigated by using uniaxial tensile testing, transmission electron microscopy (TEM) and X- ray diffraction (XRD) analysis. The results show that a duplex microstructure having both equiaxed and lamellar morphologies of reverted austenite and ferrite is obtained after intercritical annealing of the warm- rolled steel sheet. The amount of reverted austenite and its size increase with increasing annealing time, which causes a decrease of the mechanical stability of austenite and thus an increase of ultimate tensile strength (UTS) while a decrease of yield strength, total elongation (TEL) and the product of UTS to TEL (UTS??TEL). An excellent combination of strength and ductility of 40GPa??% could be obtained after a short time annealing of 5min. The combination of strength and ductility (UTS??TEL) could be increased by about 20% for the warm- rolled steel sheet compared to that of the cold- rolled steel sheet. It is thus proposed that warm- rolling is a promising way to simplify the traditional multi- stage rolling and annealing processes of medium- Mn steels as well as further enhancing it mechanical properties.  相似文献   

14.
徐文欢  孙荣民  王存宇  周荣  时捷  曹文全 《钢铁》2012,47(11):63-68
 研究了两相区退火时间对中锰钢(0.1C-5Mn)的微观组织结构、力学性能及扩孔性能的影响。利用扫描电镜(SEM)和背散射电子成像技术(EBSD)对退火过程中微观组织结构的演化进行了表征;通过拉伸和扩孔试验测定了不同退火状态下中锰钢的强度、塑性和扩孔率。研究表明,中锰钢在650℃下逆转变退火获得了含有大量奥氏体相的基体为超细晶组织的奥氏体、铁素体双相钢组织,强塑积(Rm·A)达到30GPa·%以上;奥氏体体积分数随退火时间的延长而逐步增加,但过多亚稳奥氏体对钢的综合成形性能不利。  相似文献   

15.
 Transformation-induced plasticity-aided steel [TRIP steel (0. 4C-1. 5Si-1. 5Mn)] was rolled at room temperature to different thickness reductions (0, 4%, 10%, 20%, 40%, and 60%). The mechanical properties, microstructure and austenite fractions of the rolled samples were measured by tensile test, electron back scattered diffraction (EBSD) and X-ray diffraction (XRD) for each rolling. The deformation behavior was studied based on the analysis of the mechanical properties and microstructure of steel after tensile deformation, aiming at understanding the effects of cold rolling reduction on the decay behavior of the austenite and the change of mechanical properties of the TRIP steels. It was found that increasing rolling reduction increases the yield stress gradually but decreases the total elongation significantly. It is very interesting that after 10% rolling reduction the yield stress is about 1000 MPa but still with 20% total elongation, which gives an excellent combination of yield strength and ductility. Based on the XRD results, it was revealed that in both rolling and tension the austenite volume fraction monotonically decayed with the increase of rolling strain, but the decaying rate is faster in tension than in rolling, which may be ascribed to the higher temperature in rolled specimens than in the tensioned ones during deformation. Experimental results and theoretical reasoning indicate that the decreasing trend of austenite volume fraction with strain can be formulated by a unique equation.  相似文献   

16.
The ultrafine grained duplex steels were fabricated by austenite reverted transformation annealing of the medium manganese steels after quenching or cold rolling. The microstructures were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The mechanical properties were determined by uniaxial tensile test. It was demonstrated that both the quenched and cold rolled structures were transformed into ultrafine grained duplex structures with large fractioned austenite by ART‐annealing. Long time annealing is essential to obtain the large fractioned austenite in quenched steel, but only short time annealing is needed to get large fractioned austenite in the cold rolled sheet. The mechanical examinations indicated that ART‐annealing results in the superhigh tensile elongation (>40%) and superhigh strength (1000 MPa) in quenched steels after long time annealing but in cold rolled steels after short time annealing. Based on the analysis on the work hardening behaviors of these ART‐annealed steels, the abnormal work hardening rate was presented and analyzed. The substantially enhanced ductility was attributed to the Lüders band propagation of the ferrite matrix and/or the TRIP effects of the large fractioned austenite. At last the dynamic phase natures of both fraction and stress was proposed to interpret the abnormal hardening behaviors and the “S” shaped stress–strain curves.  相似文献   

17.
研究了第三代高强度高塑性TRIP钢的退火工艺对性能的影响和组织演变规律.热轧后形成的原始马氏体与临界退火时形成的残余奥氏体使TRIP钢具有良好的强度和塑性.结果表明:实验用钢可获得1000MPa以上的抗拉强度和30%以上的断后延伸率,且强塑积>30 Gpa·%;退火温度和保温时间对钢的力学性能具有显著影响,热轧TRIP钢临界退火温度为630℃,保温时间18 h时,实验用钢能获得最佳的综合力学性能.   相似文献   

18.
High-strength low-alloy (HSLA) steels were fabricated by varying thermomechanical processing conditions such as rolling and cooling conditions in the intercritical region, and the low-temperature toughening mechanism was investigated in terms of microstructure and the associated grain boundary characteristics. The steels acceleratedly cooled to relatively higher temperature had lower tensile strength than those acceleratedly cooled to room temperature due to the increased volume fraction of granular bainite or polygonal ferrite (PF) irrespective of rolling in the intercritical region, while the yield strength was dependent on intercritical rolling, and start and finish cooling temperatures, which affected the formation of PF and low-temperature transformation phases. The steel rolled in the intercritical region and cooled to 673 K (400 °C) provided the best combination of high yield strength and excellent low-temperature toughness because of the presence of fine PF and appropriate mixture of various low-temperature transformation phases such as granular bainite, degenerate upper bainite (DUB), lower bainite (LB), and lath martensite (LM). Despite the high yield strength, the improvement of low-temperature toughness could be explained by the reduction of overall effective grain size based on the electron backscattered diffraction (EBSD) analysis data, leading to the decrease in ductile-to-brittle transition temperature (DBTT).  相似文献   

19.
利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子探针(EPMA)、X射线衍射仪(XRD)、室温拉伸等手段, 通过两相区保温-淬火(IQ)、两相区形变后保温-淬火(DIQ)、两相区保温-淬火-配分-贝氏体区等温(IQ&PB)及两相区形变后保温-淬火-配分-贝氏体区等温(DIQ&PB)热处理工艺, 研究高温形变对室温组织、性能、残余奥氏体稳定性的综合影响作用.结果表明, 经15%的压缩形变后铁素体中位错密度由0.290×1014增加至1.286×1014 m-2, 马氏体(原奥氏体)中C、Cu元素富集浓度提高, 高温形变产生位错增殖对元素配分有明显促进作用.DIQ&PB工艺下, 形变后贝氏体板条尺寸变短且宽度增加0.1 μm左右, 贝氏体转变量较未变形时增加14%, 多边形铁素体尺寸明显减小.力学性能方面, 两相区形变热处理后抗拉强度增加132.85 MPa, 断后伸长率增加7%, 强塑积可达25435 MPa·%.形变后残余奥氏体体积分数由7.8%提高到8.99%, 残余奥氏体中碳质量分数由1.05%提高到1.31%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号