首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND: Hematopoietic abnormalities are a common complication of human immunodeficiency virus infection in humans. However, the pathogenesis of these abnormalities remains unclear. Simian immunodeficiency virus (SIV) infection of rhesus macaques is a well-recognized animal model for acquired immunodeficiency syndrome. Our previous studies have determined that in early SIV infection, rhesus macaques develop peripheral blood and bone marrow pathologic changes within the first 14 days after intravenous inoculation. Further investigations were initiated to determine the onset of bone marrow viral infection and the identity of in vivo viral cellular targets in bone marrow during the primary phase of infection in macaques infected with three different strains of SIVmac. EXPERIMENTAL DESIGN: Rhesus macaques experimentally infected with pathogenic uncloned biologic SIVmac, molecularly cloned pathogenic SIVmac-239, or nonpathogenic SIVmac-1A11 were studied at 3, 7, and 14 days postinoculation. Bone marrow samples taken at necropsy were examined to identify early in vivo cellular targets of SIVmac in bone marrow and to correlate hematopathologic lesions with viral infection. In the first 2 weeks after intravenous inoculation, cellular targets of viral infection were identified by a combined in situ hybridization/immunohistochemical technique; changes in bone marrow monocyte/macrophage and CD3+ T lymphocyte populations were evaluated by immunohistochemical techniques. RESULTS: SIV-infected monocyte/macrophages were detected on days 3, 7, and 14 days postinoculation in bone marrow of all monkeys regardless of the viral isolate, whereas only a few SIV-infected CD3+ T lymphocytes were detected in 5 of 18 monkeys. The bone marrow morphologic changes associated with acute SIV infection included macrophage hyperplasia and apparent macrophage activation, diminution of bone marrow T lymphocytes, appearance of lymphoid aggregates, and myeloid and megakaryocytic hyperplasia. CONCLUSIONS: We conclude that bone marrow monocyte/macrophages are an important early cellular target in SIV infection regardless of viral pathogenicity and in vitro cellular tropism. SIV-infected bone marrow monocyte/macrophages may play a key role in the pathogenesis of bone marrow lesions and further dissemination and persistence of virus infection.  相似文献   

3.
Animal models for sexual transmission of human immunodeficiency virus can define the influences of virus type, dose, and route of inoculation on infection and clinical outcome. We used an uncloned simian immunodeficiency virus stock (SIVmac) to inoculate cells in vitro and to inoculate rhesus monkeys by intravenous and intrarectal routes. The distribution of virus genotypes present in each of these infection examples was characterized by DNA sequence analysis of viral long terminal repeats (LTRs). Our analysis of LTR sequences from in vitro and in vivo infections revealed three main genotypes: one genotype was observed only for in vitro infection, and two other genotypes were recovered only from infected animals. By comparing animals inoculated with high intrarectal doses of SIVmac and those inoculated with low doses, we demonstrated that unique subsets of the stock were selected after intrarectal infection. Our findings indicate that minor genotypes present in the stock cross the rectal mucosa and are amplified selectively to become prominent in peripheral blood mononuclear cells from acutely infected animals. Studies with a molecular recombinant of SIV and human immunodeficiency virus type 1 sequences, SHIV, showed that viral LTR sequences do not undergo especially rapid sequence variation or rearrangement after intrarectal inoculation. The mucosal barrier exerts a significant influence on infection and disease progression by reducing the efficiency of SIVmac infection and by permitting distinct, pathogenic genotypes to become established in the host.  相似文献   

4.
We have reported that infection of fetal or neonatal rhesus macaques with attenuated SIVmac1A11 results in transient viremia, anti-SIV antibody responses, weak or absent cytotoxic T-lymphocyte responses, and no clinical disease. In light of these results, we hypothesized that congenital infection with SIVmac1A11 produced immune tolerance to SIV. To test this hypothesis, at approximately 1 year of age, five rhesus macaques infected with SIVmac1A11 as fetuses (n = 3) or newborns (n = 2) and five naive juvenile rhesus macaques were challenged orally with pathogenic SIVmac251. The five naive animals became persistently viremic after oral SIVmac251 inoculation. In contrast, one of three monkeys inoculated with SIVmac1A11 in utero and one of two animals inoculated with SIVmac1A11 at birth were virus culture negative. Virus was isolated from PBMC of the other animals infected with SIVmac1A11 in utero or at birth. However, one animal had a substantially lower viral load than the control animals. These results suggest that SIV-specific immunity rather than tolerance results from congenital infection with attenuated SIVmac and that this immunity is sufficient to provide some protection from pathogenic virus challenge. These results also demonstrate that SIV can be transmitted orally in 6- to 17-month-old rhesus monkeys.  相似文献   

5.
OBJECTIVE: To construct an infectious chimeric simian immunodeficiency virus/HIV-1 (SHIV) with the envelope of a Thai subtype E HIV-1 strain for use in a non-human primate model. METHODS: A novel SHIV genome was derived using the sequences of the ectodomain of the envelope gene from the Thai subtype E strain, HIV-1(9466). This SHIV (SHIV9466.33) was recovered by cocultivation from human peripheral blood mononuclear cells (PBMC) after transfection of human rhabdosarcoma cells. Rhesus macaque and baboon PBMC were screened in vitro for susceptibility to infection with SHIV9466.33. After successful infection of baboon PBMC, four animals were inoculated intravenously with SHIV9466.33 and monitored for plasma viral RNA, virus isolation from the PBMC, seroconversion, T-cell subsets, and signs of disease. RESULTS: SHIV9466.33 was able to infect PBMC from 12 out of 14 baboons. All four of the baboons selected for in vivo inoculation became infected. Peak plasma viral RNA levels of 8000 to 700,000 RNA copies/ml were measured at 2 weeks post-inoculation. Virus was isolated from the PBMC of all four baboons during acute infection, and all seroconverted. Although transient declines in CD4+ T-cells were observed during early infection, CD4+ levels remained within normal ranges thereafter. In contrast, in vitro cultures of PBMC of four rhesus macaques were not susceptible to infection with SHIV9466.33. CONCLUSION: SHIV9466.33 containing an HIV-1 subtype E envelope displayed tropism for baboon PBMC but not for rhesus macaque PBMC. This chimeric virus established infection and induced antiviral antibodies in baboons inoculated by the intravenous route with cell-free virus. Thus, infection of baboons with SHIV9466.33 will serve as an important animal model for future studies of HIV-1 vaccine efficacy.  相似文献   

6.
Chimeric simian-human immunodeficiency viruses (SHIVs) carrying envelope glycoproteins derived from a T cell-macrophage dual-tropic primary isolate (human immunodeficiency virus type 1 [HIV-1] strain DH12) were constructed. When inoculated into macaque monkeys, SHIV(MD14) carrying simian immunodeficiency virus-derived nef established significantly higher virus loads than did SHIV(MD1), which contains the HIV-1 nef gene. Three patterns of CD4 cell depletion were observed in infected monkeys: exponential and irreversible loss to undetectable levels within 10 weeks of infection; marked reduction during acute infection followed by partial recovery and stabilization (lasting from 10 weeks to > 1 year), with a later decline to undetectable levels in some animals; and a transient loss during acute infection. The induced immunodeficiency was accompanied by CD4 cell counts of < 50 cells/microL and was associated with Pneumocystis carinii pneumonia, cytomegalovirus meningoencephalitis, lymphoid depletion, and thymic atrophy.  相似文献   

7.
8.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

9.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 10(5) to 10(7) RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8(+) T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4(+) T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4(+) T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

10.
We examined the expression kinetics of activation antigens CD38 and MHC-IIDR (DR) on circulating CD8+ lymphocytes in rhesus macaques infected with pathogenic simian immunodeficiency virus strain SIVmac239 nef-open (239) or its nonpathogenic nef-deletion mutant (delta nef). In the longitudinal study, we found for the first time the induction of DR expression on CD8+ lymphocytes in 239-infected macaques. The induction of DR was in parallel with an increasing viral load and a decreasing CD4+ lymphocyte level. In the macaques with the high viral load and low CD4 level, a considerable proportion of the DR+CD8+ subpopulation was CD69+, indicating an activated state. On the other hand, no significant increase in the DR+CD8+ subpopulation level was observed in delta nef-infected macaques. These data indicate that the evaluation of activation markers such as DR and/or CD69 on circulating CD8+ cells may be valuable as a surrogate marker in the SIV-macaque model.  相似文献   

11.
To study the effect of interleukin-2 (IL-2) on simian immunodeficiency virus (SIV) replication, pathogenesis, and immunogenicity, we replaced the nef gene of SIVmac239 by the IL-2 coding region. The virus, designated SIV-IL2, stably expressed high levels of IL-2 in cell culture. In comparison to SIVmac239, SIV-IL2 replicated more efficiently in peripheral blood mononuclear cells in the absence of exogenously added IL-2. To determine whether this growth advantage would be of relevance in vivo, four juvenile rhesus monkeys were infected with SIV-IL2 and four monkeys were infected with a nef deletion mutant of SIV (SIVdeltaNU). After a peak in the cell-associated viral load 2 weeks postinfection, the viruses could barely be isolated 3 to 7 months postinfection. Mean capsid antigen levels were higher in the SIV-IL2 group than in the nef deletion group 2 weeks postinfection. Viruses reisolated from the SIV-IL2-infected animals expressed high levels of IL-2 during the acute phase of infection. Deletions in the IL-2 coding region of SIV-IL2 were observed in two of the SIV-IL2-infected macaques 3 months postinfection. Urinary neopterin levels, a marker for unspecific immune stimulation, were higher in the SIV-IL2-infected macaques than in SIVdeltaNU-infected animals during the acute phase of infection. The SIV-specific T-cell-proliferative response and antibody titers were similar in both groups. Cytotoxic T cells directed against viral antigens were detected in all SIV-IL2-infected macaques and in two of the SIVdeltaNU-infected animals. Expression of IL-2 did not seem to alter the attenuated phenotype of nef deletion mutants fundamentally, although there might have been a slight increase in virus replication and immune stimulation during the acute phase of infection. Deletion of the viral IL-2 gene 3 months postinfection could be a consequence of a selective disadvantage due to local coexpression of viral antigen and IL-2 in the presence of an antiviral immune response.  相似文献   

12.
Chimeric simian/human immunodeficiency virus (SHIV) consists of the env, vpu, tat, and rev genes of human immunodeficiency virus type 1 (HIV-1) on a background of simian immunodeficiency virus (SIV). We derived a SHIV that caused CD4+ cell loss and AIDS in pig-tailed macaques (S. V. Joag, Z. Li, L. Foresman, E. B. Stephens, L. J. Zhao, I. Adany, D. M. Pinson, H. M. McClure, and O. Narayan, J. Virol. 70:3189-3197, 1996) and used a cell-free stock of this virus (SHIV(KU-1)) to inoculate macaques by the intravaginal route. Macaques developed high virus burdens and severe loss of CD4+ cells within 1 month, even when inoculated with only a single animal infectious dose of the virus by the intravaginal route. The infection was characterized by a burst of virus replication that peaked during the first week following intravenous inoculation and a week later in the intravaginally inoculated animals. Intravaginally inoculated animals died within 6 months, with CD4+ counts of <30/microl in peripheral blood, anemia, weight loss, and opportunistic infections (malaria, toxoplasmosis, cryptosporidiosis, and Pneumocystis carinii pneumonia). To evaluate the kinetics of virus spread, we inoculated macaques intravaginally and euthanized them after 2, 4, 7, and 15 days postinoculation. In situ hybridization and immunocytochemistry revealed cells expressing viral RNA and protein in the vagina, uterus, and pelvic and mesenteric lymph nodes in the macaque euthanized on day 2. By day 4, virus-infected cells had disseminated to the spleen and thymus, and by day 15, global elimination of CD4+ T cells was in full progress. Kinetics of viral replication and CD4+ loss were similar in an animal inoculated with pathogenic SHIV orally. This provides a sexual-transmission model of human AIDS that can be used to study the pathogenesis of mucosal infection and to evaluate the efficacy of vaccines and drugs directed against HIV-1.  相似文献   

13.
To identify viral determinants of simian immunodeficiency virus (SIV) virulence, two pairs of reciprocal recombinants constructed from a pathogenic (SIVmac239) and a nonpathogenic (SIVmac1A11) molecular clone of SIV were tested in rhesus macaques. A large 6.2-kb fragment containing gag, pol, env, and the regulatory genes from each of the cloned (parental) viruses was exchanged to produce one pair of recombinant viruses (designated SIVmac1A11/239gag-env/1A11 and SIVmac239/1A11gag-env/239 to indicate the genetic origins of the 5'/internal/3' regions, respectively, of the virus). A smaller 1.4-kb fragment containing the external env domain of each of the parental viruses was exchanged to create the second pair (SIVmac1A11/239env/1A11 and SIVmac239/1A11env/239) of recombinant viruses. Each of the two parental and four recombinant viruses was inoculated intravenously into four rhesus macaques, and all 24 animals were viremic by 4 weeks postinoculation (p.i.). Virus could not be isolated from peripheral blood mononuclear cells (PBMC) of any animals infected with SIVmac1A11 after 6 weeks p.i. but was consistently isolated from all macaques inoculated with SIVmac239 for 92 weeks p.i. Virus isolation was variable from animals infected with recombinant viruses; SIVmac1A11/239gag-env/1A11 and SIVmac239/1A11env/239 were isolated most frequently. Animals inoculated with SIVmac239 had 10 to 100 times more virus-infected PBMC than those infected with recombinant viruses. Three animals infected with SIVmac239 died with simian AIDS (SAIDS) during the 2-year observation period after inoculation, and the fourth SIVmac239-infected animal had clinical signs of SAIDS. Two animals infected with recombinant viruses died with SAIDS; one was infected with SIVmac239/1A11gag-env/239, and the other was infected with SIVmac1A11/239gag-env/1A11. The remaining 18 macaques remained healthy by 2 years p.i., and 13 were aviremic. One year after inoculation, peripheral lymph nodes of some of these healthy, aviremic animals harbored infected cells. All animals seroconverted within the first few weeks of infection, and the magnitude of antibody response to SIV was proportional to the levels and duration of viremia. Virus-suppressive PBMC were detected within 2 to 4 weeks p.i. in all animals but tended to decline as viremia disappeared. There was no association of levels of cell-mediated virus-suppressive activity and either virus load or disease progression. Taken together, these results indicate that differences in more than one region of the viral genome are responsible for the lack of virulence of SIVmac1A11.  相似文献   

14.
The nef reading frame overlaps about 70% of the U3 region of the 3' long terminal repeat (LTR) in primate lentiviruses. We investigated the functional role of these overlapping U3 sequences by analyzing the properties of three mutant forms of the pathogenic SIVmac239 clone. In mutant UScon, 90 of 275 bp in the upstream sequences (US) of U3 were changed in a conservative fashion without changing the predicted nef coding sequence. In mutant USnon, 101 of 275 bp in this region were changed in a nonconservative fashion, again without changing the predicted nef coding sequence. In mutant delta US, 275 bp in this region were deleted. Full-size, immunoreactive nef protein was synthesized in cells infected with the UScon and USnon mutants. The USnon and delta US mutants replicated with similar kinetics and to similar extents as wild-type, parental SIVmac239 in primary rhesus monkey peripheral blood mononuclear cell (PBMC) cultures. The UScon mutant replicated with slightly delayed kinetics in rhesus monkey PBMC cultures. In the CEMx174 cell line, the delta US mutant replicated similarly to the wild type, but the UScon and USnon mutants replicated with significantly delayed kinetics. Analysis of LTR-driven chloramphenicol acetyltransferase (CAT) activity and the effects of 5-azacytidine on virus replication suggested that the growth defect of the point mutants in CEMx174 cells was due in whole or in part to the introduction of multiple CG methylation sites in proviral DNA. Rhesus monkeys were experimentally infected with the UScon and USnon mutants, and the characteristics of the infection were compared with those of the parental SIVmac239. Analysis of the levels of plasma antigenemia, virus load, and CD4+ cells in PBMC revealed no decreased virulence of the mutant viruses. Analysis of lymph node biopsies taken from animals that received mutant viruses revealed histologic changes and levels of virus expression indistinguishable from those of the wild type. Furthermore, the wild-type behavior of the mutant viruses in rhesus monkeys occurred without any specific reversional events through at least 20 weeks of infection. These results, and the recent results of Kirchhoff et al. (F. Kirchoff, H. W. Kestler III, and R. C. Desrosiers, J. Virol. 68:2031-2037, 1994), suggest that these upstream sequences in U3 are primarily or exclusively nef coding sequence.  相似文献   

15.
A tetrameric recombinant major histocompatibility complex (MHC) class I-peptide complex was used as a staining reagent in flow cytometric analyses to quantitate and define the phenotype of Gag-specific cytotoxic T lymphocytes (CTLs) in the peripheral blood of simian immunodeficiency virus macaque (SIVmac)-infected rhesus monkeys. The heavy chain of the rhesus monkey MHC class I molecule Mamu-A*01 and beta2-microglobulin were refolded in the presence of an SIVmac Gag synthetic peptide (p11C, C-M) representing the optimal nine-amino acid peptide of Mamu-A*01-restricted predominant CTL epitope to create a tetrameric Mamu-A*01/p11C, C-M complex. Tetrameric Mamu-A*01/p11C, C-M complex bound to T cells of SIVmac-infected, Mamu-A*01(+), but not uninfected, Mamu-A*01(+), or infected, Mamu-A*01(-) rhesus monkeys. Specific staining of peripheral blood mononuclear cells (PBMC) from SIVmac-infected, Mamu-A*01(+) rhesus monkeys was only found in the cluster of differentiation (CD)8alpha/beta+ T lymphocyte subset and the percentage of CD8alpha/beta+ T cells in the peripheral blood of four SIVmac-infected, Mamu-A*01+ rhesus monkeys staining with this complex ranged from 0.7 to 10.3%. Importantly, functional SIVmac Gag p11C-specific CTL activity was seen in sorted and expanded tetrameric Mamu-A*01/p11C, C-M complex-binding, but not nonbinding, CD8alpha/beta+ T cells. Furthermore, the percentage of CD8alpha/beta+ T cells binding this tetrameric Mamu-A*01/p11C, C-M complex correlated well with p11C-specific cytotoxic activity as measured in both bulk and limiting dilution effector frequency assays. Finally, phenotypic characterization of the cells binding this tetrameric complex indicated that this lymphocyte population is heterogeneous. These studies indicate the power of this approach for examining virus-specific CTLs in in vivo settings.  相似文献   

16.
Recombination may be an important mechanism for increasing variation in retroviral populations. Retroviral recombination has been demonstrated in tissue culture systems by artificially creating doubly infected cells. Evidence for retroviral recombination in vivo is indirect and is based principally on the identification of apparently mosaic human immunodeficiency virus type 1 genomes from phylogenetic analyses of viral sequences. We infected a rhesus monkey with two different molecularly cloned strains of simian immunodeficiency virus. One strain of virus had a deletion in vpx and vpr, and the other strain had a deletion in nef. Each strain on its own induced low virus loads and was nonpathogenic in rhesus monkeys. When injected simultaneously into separate legs of the same monkey, persistent high virus loads and declines in CD4+ lymphocyte concentrations were observed. Analysis of proviral DNA isolated directly from peripheral blood mononuclear cells showed that full-length, nondeleted SIVmac239 predominated by 2 weeks after infection. These results provide direct experimental evidence for genetic recombination between two different retroviral strains in an infected host. The results illustrate the ease and rapidity with which recombination can occur in an infected animal and the selection that can occur for variants generated by genetic recombination.  相似文献   

17.
OBJECTIVE: To investigate whether vaccination of macaques with attenuated simian immunodeficiency virus (SIV)macC8 could induce long-term protective immunity against rectal exposure to SIVsm and intravenous exposure to the more divergent HIV-2. DESIGN AND METHODS: Eight months after vaccination with live attenuated SIVmacC8, four cynomolgus monkeys were challenged with SIVsm intrarectally and another four vaccinated monkeys were challenged with HIV-2 intravenously. Sixteen months after SIVmacC8 vaccination, another two monkeys were challenged with SIVsm across the rectal mucosa. Two vaccinees shown to be protected against SIVsm were rechallenged 8 months after the first challenge. Ten naive animals were used as controls. Serum antigenaemia, virus isolation, antibody responses, cell-mediated immunity and CD4+ and CD8+ T-cell subpopulations were monitored. PCR-based assays were used to distinguish between virus populations. RESULTS: At the time of challenge, eight out of 10 vaccinees were PCR-positive for SIVmacC8 DNA but no virus could be isolated from peripheral blood mononuclear cells. After SIVsm challenge, three out of six vaccinees were repeatedly SIVsm PCR-negative. In one of the three infected monkeys, the challenge virus was initially suppressed but the monkey ultimately developed AIDS after increased replication of the pathogenic virus. Rechallenged monkeys remained protected. All HIV-2-challenged vaccinees became superinfected. All controls became infected with either SIVsm or HIV-2. At the time of challenge the vaccinees had neutralizing antibodies to SIVmac but no demonstrable cross-neutralizing antibodies to SIVsm or HIV-2. Titres of antigen-binding or neutralizing antibodies did not correlate with protection. Cytotoxic T-cell responses to SIV Gag/Pol and virus-specific T-cell proliferative responses were low. CONCLUSION: The live attenuated SIVmacC8 vaccine was able to induce long-term protection against heterologous intrarectal SIVsm challenge in a proportion of macaques but not against the more divergent HIV-2, which was given intravenously.  相似文献   

18.
The chimeric simian-human immunodeficiency virus SHIVKU-1, bearing the envelope of human immunodeficiency virus type 1 (HIV-1), causes fulminant infection with subtotal loss of CD4(+) T cells followed by development of AIDS in intravaginally inoculated macaques and thus provides a highly relevant model of sexually transmitted disease caused by HIV-1 in human beings. Previous studies using this SHIV model had shown that the vpu and nef genes were important in pathogenesis of the infection, and so we deleted portions of these genes to create two vaccines, DeltavpuDeltanefSHIV-4 (vaccine 1) and DeltavpuSHIVPPc (vaccine 2). Six adult macaques were immunized subcutaneously with vaccine 1, and six were immunized orally with vaccine 2. Both viruses caused infection in all inoculated animals, but whereas vaccine 1 virus caused only a nonproductive type of infection, vaccine 2 virus replicated productively but transiently for a 6- to 10-week period. Both groups were challenged 6 to 7 months later with pathogenic SHIVKU-1 by the intravaginal route. All four unvaccinated controls developed low CD4(+) T-cell counts (<200/microliter) and AIDS. The 12 vaccinated animals all became infected with SHIVKU-1, and two in group 1 developed a persistent productive infection followed by development of AIDS in one. The other 10 have maintained almost complete control over virus replication even though spliced viral RNA was detected in lymph nodes. This suppression of virus replication correlated with robust antiviral cell-mediated immune responses. This is the first demonstration of protection against virulent SHIV administered by the intravaginal route. This study supports the concept that sexually transmitted HIV disease can be prevented by parenteral or oral immunization.  相似文献   

19.
Simian immunodeficiency virus (SIV) infection of newborn macaques is a useful animal model to explore novel strategies to reduce perinatal human immunodeficiency virus (HIV) infection. The availability of two easily distinguishable virus isolates, SIVmac251 and the simian/human immunodeficiency virus chimera SHIV-SF33, allows tracing the source of infection following inoculation with both viruses by different routes. In the present study, we evaluated the efficacy of pre- and postinoculation treatment regimens with 9-[2-(phosphonomethoxy)propyl]adenine (PMPA) to protect newborn macaques against simultaneous oral SIVmac251 and intravenous SHIV-SF33 inoculation. Untreated newborns became persistently infected following virus inoculation. When three pregnant macaques were given a single subcutaneous dose of PMPA 2 hr before cesarean section, their newborns became SIV-infected following SIV and SHIV inoculation shortly after birth. In contrast, when four newborn macaques were inoculated simultaneously with SIV and SHIV, and started immediately on PMPA treatment for 2 weeks, only one animal became persistently SIV-infected; the remaining three PMPA-treated newborns, however, had some evidence of an initial transient virus infection but were seronegative and healthy at 8 months of age. Our data demonstrate that PMPA treatment can reduce perinatal SIV infection and suggest that similar strategies may also be effective against HIV.  相似文献   

20.
CD8+ T cells employ granzyme B (GrB) to induce apoptosis in target cells. Increased expression of GrB has been put forward as a diagnostic marker in transplant rejection and viral infection. Three-color flow cytometric analysis revealed that peripheral blood CD8+ T lymphocytosis during primary cytomegalovirus infection after renal transplantation resulted from expansion of a CD8+GrB+CD62L+ T cell subset that was almost absent during stable transplant function or acute rejection. This expansion coincided with a temporary increase in systemic soluble GrB (sGrB) levels. No such increase was observed during stable transplant function or acute rejection. Thus, the primary immune response to cytomegalovirus infection is accompanied by appearance of CD8+GrB+CD62L+ T cells and increased sGrB levels in the peripheral blood compartment. Determination of the latter may provide a novel approach for monitoring viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号