首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
在流态化炼铁的过程中,由于气-固分布不均匀,导致节涌、沟流、气体利用率低、粘结失流等现象,甚至出现死床的状况.本实验建立新型侧搅拌流化床反应器的物理模型,研究了搅拌方式、空气体积流率、搅拌器转速、搅拌器倾斜角度四个因素对流化床内颗粒与气泡运动行为及压强变化规律的影响.结果表明:侧搅拌流化床的气-固流化质量优于垂直搅拌流化床,气泡尺寸显著减小;空气体积流率的增加会使流化床内颗粒运动情况加剧,气泡尺寸增大,压强变化加剧;搅拌桨转速增加可有效地剪切、破碎床内气泡;倾斜角度为45°的侧搅拌流化床内的气-固流化质量最优.  相似文献   

2.
采用基于气泡聚并和破碎机理的群体平衡(PBM-MUSIG)模型,对双层半圆管盘式涡轮桨搅拌槽内的气液分散特性进行了数值模拟;考察了不同通气量和操作转速下气液搅拌槽内流体流动,局部气含率和气泡尺寸的分布规律.模拟结果表明:通气工况下搅拌槽内的液相流场具有双循环流动形式;采用PBM-MUSIG模型预测的局部气含率分布与文献实验数据吻合较好;搅拌槽内气泡尺寸随转速增加而减小,随气量增加而增大;桨叶排出流区域内气泡尺寸较小,近壁区和循环区内气泡尺寸较大.  相似文献   

3.
杨卫国  王金福 《化工冶金》2000,21(4):363-368
采用溶氧法测量了三相循环流化床中液相溶氧浓度的轴向分布,并按轴向扩散模型处理实验数据,优化得到气液体积传质系数kLa,同时骨光纤探头测量了体系中的气含率和气泡大小分布,计算得到了气液相界面积a和气液传质系数kL,并研究了主要操作条件(表观气速、表观速和固含率)对气液传质系数的影响规律。  相似文献   

4.
机械搅拌反应器内通常包含气、液、固等多相体系,利用计算流体力学方法针对其内部复杂物料运动的模拟近年来取得了很大进展。欧拉双流体模型被用来模拟一种装配Rushton型叶轮机械搅拌反应器内包含气泡的气液两相流,并通过不同的相间力模型及自定义湍流子模型描述槽内气泡复杂运动。分析了不同曳力、气泡诱导湍流、升力、湍流分散力等模型在模拟气泡分布时的效果,并将模拟结果与Barigou和Greaves的试验结果进行比较。结果表明,提出的模拟方法在机械搅拌反应器模拟中能够得到准确的气体分布结果。  相似文献   

5.
在化工冶金和环境保护等领域应用十分广泛的气—液—固三相搅拌槽反应器由于缺少基础实验数据造成设计放大的困难。对于能直接有效地反映反应器内部特性的分散相(气泡和固体颗粒)的局部相含率分布,目前仍然没有可靠的实验测量方法。在总结前人工作的基础上,设计了一种带喇叭口的取样管,并进行局部相含率的测量,验证了该取样管的可行性。当开口大小为取样管管径的3倍时测量结果最准确,开口朝下时更易收集气体。改进的取样法实现了对以空气为气相、水为液相、石英砂为固相的三相搅拌槽内局部相含率分布的测量。实验采用单层标准Rushton桨(RTD),通过实验数据分析发现:局部固含率由中心沿径向逐渐增大,由槽底向上则逐渐减小,而局部气含率则由中心沿径向减小,由槽底沿轴向分布较均匀,测定结果与对反应器的定性认识相符。  相似文献   

6.
针对贫化电炉还原油枪中气、油混合顶吹对渣层搅拌效果的研究,等比例制作贫化电炉水模型,进行气液混合喷吹实验。实验结果表明:顶吹气液两相混合射流在熔池中形成大小不一的气泡或气泡群,气泡本身的形变、破裂以及气泡间的团聚运动决定了油枪对熔池的搅拌效果。通过测量不同流量下气泡群尺寸的变化,分析气液流量混合比对熔池搅拌效果的影响。  相似文献   

7.
以NaCl溶液为示踪剂,采用脉冲示踪法考察了搅拌转速、流量及液位对带机械搅拌装置的管式反应器内停留时间分布(RTD)曲线的影响.用Peclet操作准数表征轴向扩散特性.结果表明:增加搅拌装置后,反应器内的流动型态仍接近活塞流;随流量的减小和液位的升高,流体流动愈向活塞流靠近,即减小流量或者升高水位有利于减小返混;当搅拌转速超过100r/min时,搅拌转速对停留时间分布的影响不大.  相似文献   

8.
采用E-E与PBM模型耦合,探究不同搅拌速率、通气速率、液体黏度下搅拌釜内气-液两相流体力学特性。重点模拟和讨论不同搅拌速率、通气速率、液体黏度下瞬态气含率、液体速度、气泡直径分布等气-液两相流体力学参数,使密闭搅拌釜内气-液两相流体运动状态可视化,为湿法冶金气-液搅拌过程优化操作条件提供指导。  相似文献   

9.
利用ANSYS13.0/Fluent软件对钙化渣碳化反应器内气液两相流动进行模拟计算。对比水模型试验结果,模拟得到的气体分布及反应器内平均气含率变化趋势与试验结果一致,证明本研究采用双欧拉模型模拟分析钙化渣碳化反应器内的宏观流动行为是可行的。研究结果对钙化渣碳化反应器的设计及应用具有一定的参考价值。  相似文献   

10.
采用标准k-ε湍流模型、Eluer-Eluer双流体模型,结合滑移网格法,对氟钽酸钾钠还原搅拌釜中搅拌流场进行数值模拟,研究不同转速、搅拌桨叶类型对液钠-熔盐分散特性、流场的影响。结果表明,在两种桨叶模型下,液钠仅局部分布在混合熔盐表面;平直叶桨、折叶桨搅拌均在搅拌釜内形成四个循环流区域,且在搅拌轴附近区域存在搅拌死区;液钠在液面的分散面积均随着转速的增加而减小,沿搅拌轴进入熔盐的深度随转速的增加而增大;在折叶桨模型下,随着搅拌转速的增加,近液面处流场速度增大,速度沿X轴方向呈对称分布。  相似文献   

11.
The impeller blade structure for gas injection refining under mechanical stirring has been explored by water model experiments.A sloped swept-back blade impeller is proposed for the purpose.The central part of the impeller is disk-or plate-shaped,and the blades are fitted to the side of the disk or plate.In addition,a disk is put on the top side of the impeller blades.The impeller can strengthen the radial and downward flow between the blades and weaken the swirl flow in the zone above the impeller.These effects on flow phenomena are favorable for disintegration and wide dispersion of bubbles which are injected from a nozzle attached to the center of the underside of the impeller.In addition,the sloped swept-back impeller requires less power consumption.The impeller shaft should be placed away from the vessel center so as to disperse the injected bubbles widely in the bath under mechanical stirring even with unidirectional impeller rotation and without installing baffles.The number of gas holes in the nozzle and the direction of gas injection have a little effect on the bubble disintegration and dispersion in the bath.Highly efficient gas injection refining can be established under the conditions of proper impeller size,larger nozzle immersion depth,larger eccentricity and rotation speed of the impeller.The sloped swept-back blade impeller can decrease the power consumption and yet improve the bubble disintegration and wide dispersion in the bath.  相似文献   

12.
Abstract: The impeller blade structure for gas injection refining under mechanical stirring has been explored by water model experiments. A sloped swept-back blade impeller is'proposed for the purpose. The central part of the impeller is disk- or plate-shaped, and the blades are fitted to the side of the disk or plate. In addition, a disk is put on the top side of the impeller blades. The impeller can strengthen the radial and downward flow between the blades and weaken the swirl flow in the zone above the impeller. These effects on flow phenomena are favorable for disintegration and wide dispersion of bubbles which are injected from a nozzle attached to the center of the underside of the impeller. In addition, the sloped swept-back impeller requires less power consumption. The impeller shaft should be placed away from the vessel center so as to disperse the injected bubbles widely in the bath under mechanical stirring even with unidi- rectional impeller rotation and without installing baffles. The number of gas holes in the nozzle and the direction of gas injection have a little effect on the bubble disintegration and dispersion in the bath. Highly efficient gas injection refining can be established under the conditions of proper impeller size, larger nozzle immersion depth, larger eccen- tricity and rotation speed of the impeller. The sloped swept back blade impeller can decrease the power consumption and vet improve the bubble disintegration and wide dist~ersion in the bath.  相似文献   

13.
Various forms of plumes have been identified following the injection of air at different rates through a porous plug into water contained in a ladle-shaped vessel. Discrete bubbles form at the plug and rise uniformly through the column of liquid at gas flow rates up to 14 cm3/s cm2 of plug surface; at higher flow rates, groups of bubbles increasingly coalesce into larger gas pockets, and beyond about 40 cm3/s cm2, the gas globes are large enough to cover the entire plug surface before detachment and gradual disintegration as they rise through the body of liquid. The gas fraction, as well as bubble frequency, bubble velocity, and bubble size, have been measured in the various dispersion regimes by means of an electroresistivity probe. The radial distributions of gas fraction and bubble frequency are approximately bell-shaped about the axis of flow, and the reduced values are close to Gaussian functions of the reduced radial distance from the axis. The gas fraction along the axis has been correlated to the reduced height of the plume; it increases with decreasing distance above the plug and with increasing gas flow rate. The axial bubble frequency shows a decrease in the vicinity of the plug with the onset of bubble coalescence, but the values of the frequencies at all gas injection rates converge to about 12 s−1 toward the surface of the bath. The mean bubble velocity increases with increasing flow rate but drops once coalescence is fully established. Conversely, there is a sudden increase in the mean bubble diameter with the onset of coalescence. The axial and radial components of the velocity of the liquid surrounding the plume have been measured by means of a Laser-Doppler Velocimeter (LDV), and the results show that the circulation patterns are identical, irrespective of the dispersion regime. The axial flow which is upward in the vicinity of the plume decreases in magnitude with increasing radial distance, ultimately reversing to an in-creasing downward flow beyond a certain distance from the plug axis. Similarly, the radial flow which is outward from the plume near the liquid surface decreases steadily with depth and eventually reverses to an inward flow at a depth independent of the gas injection rate. The profiles of the axial velocities are almost sigmoidal, except in the coalescence regime, where the effect of turbulence is profound at the upper liquid layers. The radial liquid velocities are generally small relative to the axial components, only about one-fifth as large, considering the maximum average values.  相似文献   

14.
The water model experiments were carried out to study the bubble morphology in the tundish and mold with the process of annular argon blowing at tundish upper nozzle. The effects of the position of gas permeable brick, the casting speed and the argon flow rate on the bubble size distribution, the bubble migration behavior and the flow behavior of liquid steel near the liquid level in tundish were further investigated, coupled with the numerical simulation. The results show that with the process of annular argon blowing at tundish upper nozzle, a frustum cone shaped bubble plume can be formed around the stopper rod. The concentration of argon bubbles gradually decreases outward along the radial direction of the stopper rod. Owing to the wall attached effect, the bubble plumes float upward along the stopper rod, which can increase the collision probability between bubbles and the velocity of bubble plumes, causing a larger impact strength on the liquid level in tundish. In addition, a part of small bubbles are wrapped into the nozzle and the mold due to the drag force of liquid steel. With increasing argon flow rate, the number of bubbles in annular bubble plumes and the vertical velocity of liquid steel near the liquid level in tundish increase significantly. With increasing casting speed, the width and the bubble number of annular bubble plumes gradually decrease, leading to a decrease of the vertical velocity of liquid steel near the liquid level in tundish. Increasing the distance between the annular gas permeable brick and the center of tundish upper nozzle, the dispersion of bubbles and the width of bubble plumes increase, and the impact strength of bubbles acting on the liquid level in tundish becomes weaker. As the argon flow rate and the casting speed increase, and the distance between the gas permeable brick and the center of tundish upper nozzle decreases, the gas volume and bubble size in the mold increase. Under the experimental conditions, when the inner and outer diameters of the annular gas permeable brick are 110mm and 140mm, respectively, and the casting speed is 1.2m/min, the appropriate argon flow rate is 4L/min.  相似文献   

15.
A model study was carried out to elucidate bubble and liquid flow characteristics in the reactor of metals refining processes stirred by gas injection. Wood’s metal with a melting temperature of 70 °C was used as the model of molten metal. Helium gas was injected into the bath through a centered single-hole bottom nozzle to form a vertical bubbling jet along the centerline of the bath. The bubble characteristics specified by gas holdup, bubble frequency, and so on were measured using a two-needle electroresistivity probe, and the liquid flow characteristics, such as the axial and radial mean velocity components, were measured with a magnet probe. In the axial region far from the nozzle exit, where the disintegration of rising bubbles takes place and the radial distribution of gas holdup follows a Gaussian distribution, the axial mean velocity and turbulence components of liquid flow in the vertical direction are predicted approximately by empirical correlations derived originally for a water-air system, although the physical properties of the two systems are significantly different from each other. Under these same conditions, those turbulent parameters in high-temperature metals refining processes should thus be accurately predicted by the same empirical correlations.  相似文献   

16.
摘要:通过水模型实验研究了上水口环形吹氩工艺下中间包和结晶器内气泡形貌,并结合数值模拟分析了透气砖位置、拉坯速度和吹氩量对中间包和结晶器内气泡尺寸、气泡迁移和中间包近液面钢液流动的影响。结果表明:上水口环形吹氩形成以塞棒为中心的圆台状气泡羽流,气泡浓度沿径向向外逐渐减少;附壁效应使得气泡羽流偏向塞棒壁面流动,增大气泡的碰撞聚并概率和近塞棒壁面的羽流上升速度,对中间包液面产生较大冲击作用;同时,部分细小气泡会随钢液进入水口及结晶器内部;增大吹氩量,中间包内环形气泡羽流中气泡数目明显增多,中间包近液面钢液上升速度增大;增大拉坯速度,环形气泡羽流的宽度和气泡数量逐渐减小,近液面速度减小;增大透气环距水口中心距离,中间包内气泡弥散度增大,环形气泡羽流宽度也随之增大,气泡羽流对中间包液面冲击作用减弱;增大吹氩量和拉坯速度、减小透气环距水口中心距离,进入结晶器的气量和气泡尺寸逐渐增大。实验条件下,透气环内外径为110mm/140mm、拉坯速度为1.2m/min时,吹氩量为4L/min较为合适。  相似文献   

17.
A better understanding of complex process phenomena and engineering of gas dispersion techniques in metallurgical processes can be obtained with the method of computer aided process simulation. Main target of this investigation is to analyze the influence of operational and design parameters such as gas flow rate, reactor diameter, liquid height, or injector size, number and location on the system quantities like mixing power, hold up or degassing rates. The bath aspect ratio should be between 0.8 and 1.2 if the desorption at the bath surface is playing an important role. An optimization of the injected gas quantitiy can be achieved with increased injector cross-section area (bigger bubbles ascending faster and increasing the mixing power) or higher aspect ratios (longer bubble residence times in the reactor). Dead zones can be avoided by distribution of gas through several injectors positioned symmetrically, increasing total mixing power and specific interface area in the system.  相似文献   

18.
Experiments were carried out to investigate the behavior of horizontal gas–liquid injection in a water tank. Measurements of bubble properties and mean liquid flow structure were obtained. The turbulence in the liquid phase appears to help generating bubbles with relatively uniform diameters of 1–4?mm. Both bubble properties and mean liquid flow structure depended on the gas volume fraction and the densimetric Froude number at the nozzle exit. It was found that the bubbles strongly affected the trajectory of the water jet, which behaved similarly to single-phase buoyant jets. However, at gas volume fractions smaller than about 0.15, the water jet completely separated from the bubble core. Bubble slip velocity was also found to be higher than the terminal velocity for isolated bubbles reported in the literature. Dimensionless correlations were proposed to describe bubble characteristics and the trajectory of the bubble plumes and water jets as a function of the gas volume fraction and the densimetric Froude number. Finally, applications of the results for aeration/mixing purposes are presented.  相似文献   

19.
In gas injection refining processes, a great amount of gas is injected into molten metal in short time, so that very large bubbles are inevitably formed. Wide dispersion of small bubbles in the bath is indispensable for high refining efficiency. Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion. Absorption rate are used to research on the influence law of the bubble dispersion and disintegration and gas-liquid absorption by the influence of, rotation mode, rotation speed and gas flow rate. Compared to the experimental results of absorption rate under eccentric stirring and centric stirring ,provide the scientific experimental and theoretical guidance for high-temperature experiment of hot metal desulfurization .According to experimental and theoretical analysis, this paper has studied various factors effecting on gas absorption process and volumetric mass transfer coefficient using the system of CO2-NaOH-H2O.The results show that:the volumetric mass transfer coefficient and absorption efficiency of CO2 can be increased under eccentric stirring mode, Because bubble disperse quickly with eccentric mechanical stirring, which results in promoting complete reaction between CO2 and NaOH, and improving the mass transfer coefficient and absorption. Volumetric mass transfer coefficient and efficiency of CO2 increase with the increasing rotation speed under the condition of eccentric stirring .But volumetric mass transfer coefficient and efficiency of CO2 decrease with the increasing rotation speed under the condition of centric stirring.  相似文献   

20.
水口吹氩工艺板坯结晶器内气泡运动行为的物理模拟   总被引:3,自引:0,他引:3  
以1300 mm × 230 mm板坯连铸结晶器的相似比0.4的物理模型,研究了拉速1.1 m/min、水口插入深度160 mm、水口吹气量0~15 L/min时连铸结晶器内气泡的运动行为,及其对钢液流股冲击深度、液面波动和液面裸露的影响。实验结果表明,随水口吹气量增加,结晶器内气泡的数量和尺寸都有所增加,气泡在钢液内水平方向扩散范围增大,且气泡最大穿透深度亦增加;当水口吹气量增大到5 L/min时,气泡逸出后在液面由全部向水口方向运动变为以集中逸出位置为中心的四散运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号