首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高能球磨法制备粒径小于200 nm的微细锰方硼石颗粒,将其作为摩擦填料添加到铜基摩擦材料中,利用放电等离子烧结(SPS)的方法制备出铜基摩擦材料。通过扫描电镜(SEM)、透射电镜(TEM)以及X射线衍射(XRD)研究纳米颗粒的形貌、显微结构与成分。在铜基摩擦材料中添加不同粒径的纳米锰方硼石,并通过摩擦磨损试验测试其磨损性能。结果表明:高能球磨法可以有效地细化锰方硼石;添加球磨处理的锰方硼石后所有样品的致密度均在97%以上,添加球磨50 min的纳米锰方硼石的样品致密度达到99%以上;稳定了摩擦因数(平均摩擦因数为0.187),磨损量为1.049×10-14 m3·J-1,抗压强度达到167 MPa;随着锰方硼石的细化,摩擦的样品磨损机理从剥层磨损与粘着磨损逐渐转向轻微的磨粒磨损。  相似文献   

2.
采用粉末冶金压烧技术制备了含不同质量分数石墨的铜基摩擦材料,研究了石墨含量对摩擦材料微观组织、磨损性能和磨损机理的影响。结果表明:铜基体的连续性随石墨含量增加而降低,动摩擦系数随石墨含量的增加先增加后降低,磨损量随着石墨含量的增加而减小;材料的磨损机理为犁沟式磨料磨损;石墨质量分数为16%时,试样动摩擦系数和静摩擦系数最高并且稳定,具有最好的摩擦磨损性能。  相似文献   

3.
采用冷压-烧结方法制备了含质量分数0%、5%、10%、15%Cr2AlC的铜基复合材料, 利用光学显微镜、扫描电子显微镜及能谱仪观察并分析复合材料微观组织和微区成分, 使用HVS-1000型显微硬度计和M-2000型摩擦磨损试验机测试复合材料的硬度和摩擦磨损性能, 分析Cr2AlC质量分数对复合材料硬度、摩擦性能和磨损机理的影响。结果表明:含Cr2AlC铜基复合材料的相对密度为0.8, Cr2AlC均匀分布在铜基体上, 有效提高了复合材料的硬度; 随Cr2AlC质量分数增加, 复合材料摩擦系数先升高后降低, 磨损量先降低后回升, 当Cr2AlC质量分数为10%时, 复合材料的摩擦系数最大, 磨损量最低, 耐磨性能最佳; 未添加Cr2AlC的纯铜材料磨损机理以黏滑为主, 含Cr2AlC铜基复合材料的磨损机理是犁削磨损、剥层磨损和氧化磨损三者的结合。  相似文献   

4.
采用粉末冶金法制备膨胀蛭石含量(质量分数,下同)分别为0.1%,2%和4%的铜基摩擦材料,利用MM-1000摩擦试验机测定该材料的摩擦磨损性能,并研究膨胀蛭石对磨损机理的影响。结果表明:加入1%膨胀蛭石时,铜基摩擦材料的摩擦因数提高,但随蛭石含量继续增加而逐渐降低。低转速下,加入膨胀蛭石的材料磨损率显著降低,磨损率受蛭石含量的影响较小;在中高转速下,随蛭石含量从1%增加到4%,材料的磨损率逐渐增大。加入膨胀蛭石后材料表面的摩擦膜更光滑,没有出现易疲劳磨损的亚表面。在低转速条件下,含膨胀蛭石的铜基摩擦材料的磨损机制以粘着磨损为主,在中高速条件下,其磨损机制转变为粘着磨损、犁削磨损和疲劳磨损的复合磨损机制。  相似文献   

5.
纳米SiO2含量对铜基摩擦材料摩擦学性能的影响   总被引:3,自引:1,他引:2  
采用粉末冶金法制备了添加纳米SiO2的铜基粉末冶金摩擦材料,经湿式摩擦材料摩擦性能试验机测试,研究了纳米SiO2添加量对摩擦材料的摩擦系数、磨损率和耐热系数的影响.结果表明:随纳米SiO2质量分数从0增加到1.5%,材料的动摩擦系数先减小后增加,静摩擦系数无明显变化;耐热系数逐步提高;磨损率则先减小后增加;纳米SiO2质量分数为0.75%的材料性能最佳.研究认为:纳米SiO2对铜基湿式摩擦材料的摩擦学性能有显著影响,添加适量的纳米SiO2可使材料具有高而稳定的摩擦系数、优异的耐磨性和耐热性等综合性能.  相似文献   

6.
采用粉末冶金工艺,制备了3种不同石墨含量的Fe-Mo-石墨自润滑材料,测定了3种材料的密度、硬度和抗压强度,并对材料的组织和不同摩擦速率下的摩擦学性能进行分析和研究,最后采用扫描电镜(SEM)和X射线衍射仪(XRD)对磨痕表面形貌和成分进行表征。结果表明,复合材料中石墨添加质量分数为1.0%时,材料组织以铁素体为主相,此时的摩擦系数较为稳定,磨损率随摩擦速率的提高而增大,磨损机制主要为粘着磨损;石墨添加质量分数高于1.0%时,材料组织以珠光体为主相,摩擦系数随摩擦速率提高而增大,但磨损率随之减小,且摩擦速率高于0.5m/s时,磨损率量级为10~(-8)cm~3/N·m,属于轻微磨损。材料中珠光体、Fe_2MoC的生成,以及摩擦过程中生成的Fe_2O_3、Fe_3O_4是Fe-Mo-石墨材料在高的摩擦速率下具有优良耐磨性的主要原因。  相似文献   

7.
研究了Fe在铜基粉末冶金航空摩擦材料中的摩擦磨损作用及机理。研究表明:Fe在铜基摩擦材料中起到了摩擦组分的作用,对材料的机械性能和摩擦磨损性能起到了重要的作用。Fe能提高铜基摩擦材料的强度、硬度;当Fe含量超过4%后,随Fe含量的增加,材料的摩擦系数及稳定性增加;高速摩擦条件下,Fe能促进摩擦面氧化膜的形成,减小材料的摩擦系数和磨损量。  相似文献   

8.
利用粉末冶金方法制备了含不同质量分数铜铁预合金粉末的铜基摩擦材料,并在不同温度下对材料摩擦性能进行测试。结果表明:铜铁预合金粉末的引入使得铁元素在烧结后铜基体中及铜基体与其他组元界面处析出,阻碍了烧结,导致材料密度下降。存在于界面处的铁以及反应生成的珠光体成为硬质强化相,使得材料的磨损机理从纯铜基体时的黏着磨损向添加铜铁预合金粉末之后的磨粒磨损转变,导致摩擦系数先下降后上升。200~250 ℃为摩擦系数保持稳定的临界温度。当超过临界温度时,摩擦表面铜软化,其自润滑作用使得摩擦系数下降。含30%铜铁预合金粉末的铜基摩擦材料(质量分数)的摩擦磨损性能最佳,这是由于此时摩擦材料兼具铜良好的塑性以及生成的适量硬质相能够强化摩擦表面。  相似文献   

9.
在粉末冶金铜基摩擦材料中添加6%(质量分数)的SiO2/ZrO2复合陶瓷组元,研究SiO2和ZrO2的质量分数对摩擦材料摩擦磨损性能的影响,并分析其机理。结果表明:随w(SiO2)/w(ZrO2)比值减小,铜基摩擦材料的密度和硬度增大。高速制动时,摩擦材料的摩擦因数和摩擦稳定因数较小。SiO2可有效提高摩擦因数,ZrO2可降低摩擦副的磨损率。当w(SiO2)/w(ZrO2)为2/4时,摩擦材料具有较好的摩擦磨损性能,高速制动下平均摩擦因数为0.326,摩擦稳定因素处于较高水平,为0.71,对偶数材料损伤在可接受范围内。SiO2较易脱落而形成磨粒,ZrO2与基体界面结合状态较好,所以随SiO2含量减少,主要磨损机制从磨粒磨损转变为黏着磨损和磨粒磨损,最后转变为剥层磨损。  相似文献   

10.
采用粉末冶金方法制备了高速列车用铜基摩擦材料,研究了添加ZrO2的量对材料的摩擦因数、磨损量的影响规律。结果表明:在添加ZrO2的材料中,含5%(质量分数,下同)ZrO2的材料摩擦因数较高,磨损量也较大;添加8%ZrO2的材料在高速下的摩擦因数较高,磨损率较小且变化平稳。材料的磨损在较低的速度下以粘着磨损为主;随着速度的上升,磨损也逐渐变成以剥层脱落和氧化磨损的混合机制为主。  相似文献   

11.
含炭纤维湿式铜基摩擦材料的性能   总被引:1,自引:0,他引:1  
采用粉末冶金方法制备含短炭纤维的湿式铜基摩擦材料,研究炭纤维含量对湿式摩擦材料的摩擦磨损性能和力学性能的影响,以及制动条件对动摩擦因数的影响。结果表明:随着炭纤维含量及材料的孔隙率增加、硬度及密度均降低,摩擦因数呈先增加后减小的变化趋势,磨损量呈先减小后增大的趋势。炭纤维含量为(质量分数)1%时材料的摩擦磨损性能最好,摩擦因数最大且最稳定,磨损量最小。材料摩擦因数随着载荷增大而增大,随炭纤维含量增加磨损率呈先减小后增大的趋势。炭纤维的加入提高了材料的能量许用值。  相似文献   

12.
以电解铜粉和TiC粉为原料, 采用粉末冶金法制备了增强体质量分数为5%、10%、15%、20%的TiC颗粒增强铜基复合材料。通过对显微组织的观察和对相对密度、硬度、电导率、磨损率、摩擦系数的测试, 研究了增强相质量分数、烧结温度对复合材料组织性能的影响。研究结果表明, TiC颗粒除少量团聚外均匀分布在基体上, 并与基体结合良好; 随烧结温度升高, 铜基复合材料的密度和硬度均有所增加; 随增强相质量分数的增加, 硬度增加, 相对密度和电导率均有所下降; 磨损率则表现为先降低后有所增加的趋势, 磨损率在TiC质量分数为15%时最低; 铜基复合材料的摩擦系数明显低于纯铜, 其磨损机制主要以磨粒磨损为主。  相似文献   

13.
为了开拓锰方硼石的应用,将选矿之后粉末状锰方硼石进行高能球磨处理,得到尺寸小于10μm的粉末颗粒,采用放电等离子烧结,将得到的粉末颗粒制备成圆片状样品.使用X射线衍射仪和扫描电子显微镜对粉末状锰方硼石和摩擦片样品进行表征,证实该样品为斜方晶系的Mn3B7O13Cl.用WTM-ZE可控气氛微型摩擦试验仪测试锰方硼石样品的摩擦性能,其摩擦因数范围为0.2~0.6,磨损量小,为1×10-9 cm3·N-1·m-1左右,表明锰方硼石在摩擦材料填料领域有应用前景.   相似文献   

14.
以铁-铜为主组元,以石墨和MoS2为润滑组元,以Al2O3、SiC、锆英砂为摩擦组元,并添加不同质量分数的碳纤维,将原料混合均匀后经600 MPa冷压成形,然后在氢气气氛下热压烧结2 h(980℃,2~3 MPa),制备得到碳纤维增强铁-铜基摩擦材料,并对其硬度、相对密度、显微组织、摩擦磨损性能进行研究。结果表明:铁-铜基体上均匀分布着耐磨的陶瓷相及润滑组元,铁-铜基体有部分固溶,碳纤维掩埋在基体和摩擦组元间。当碳纤维质量分数为2%~4%时,所制备的摩擦材料硬度为HV 102.2~118.6,相对密度为90.4%~92.6%,摩擦系数为0.56~0.60,磨损失重量最小。该摩擦材料的磨损主要为磨粒磨损,伴随少量粘着磨损。碳纤维可以强化基体,钉扎摩擦组元,在摩擦磨损过程中隔断犁沟,降低材料磨损。  相似文献   

15.
为了探讨不同含量的Sn、Ni、Cr元素对铜基粉末冶金摩擦材料性能及显微结构的影响,采用粉末冶金技术制备了4组铜基摩擦材料,分别测试材料的压缩强度、硬度和摩擦磨损性能及显微结构。研究结果表明:合金元素能强化基体,显著提高材料的力学性能。Ni能显著提高摩擦因数,但会导致磨损率较高。3%Sn的加入,提升了材料的耐磨损性能,降低对偶擦伤。Ni和Cr元素增强铜基材料的磨损机制主要为黏着磨损和犁沟效应,而其他材料的磨损机制主要为剥离磨损和犁沟效应的共同作用。  相似文献   

16.
采用粉末冶金方法制备铜基摩擦材料,研究钛的添加量对材料的摩擦磨损性能的影响。结果表明:随着钛质量分数由3%增加到12%,铜基摩擦材料的相对密度提高,硬度增加。钛的添加导致晶格畸变,材料硬度提高。随着摩擦速度增加,材料的摩擦因数减小。钛添加到铜基摩擦材料中,降低了铜基摩擦材料的摩擦因数和磨损量,原因在于钛提高了材料的硬度,增加了表面微凸体强度,减少了犁削程度,从而降低了摩擦面的损伤程度,提高了材料的耐磨性。  相似文献   

17.
重负荷机械制动铁铜基摩擦材料的研制   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了用于重负荷机械作制动材料的铁铜基粉末冶金摩擦材料制造工艺,并对摩擦材料的基本选择、摩擦组元的影响、添加Mo2O3的作用进行了探讨和研究。结果发现,随着等份量的SiC和SiO2总量的增加,摩擦系数增加,材料的磨损率先下降后上升,有一最小磨损率。添加Mo2O3不仅对提高摩擦系数有一定的效果,而且对降低材料的磨损有显著效果。研制了一种摩擦磨损性能良好价格相对低廉的铁铜基重负荷机械制动材料。  相似文献   

18.
WC-Co-Cr 是一类具有高硬度、 耐磨损、 耐腐蚀的金属陶瓷复合涂层材料, 常用于工业生产中苛刻服役环 境的工件表面防护。 本试验采用超音速火焰喷涂 (HVOF) 技术在 Q235 钢表面分别制备了 WC-12Co-4Cr 和 WC- 12Co 复合涂层。 使用 XRD、 光学显微镜、 SEM 以及附带的 EDS、 显微硬度计分别对比研究了两组涂层的物相、 微观形貌、 元素分布、 显微硬度和孔隙率。 采用球盘式摩擦试验机重点研究两组涂层在常温 (25 ℃ )、 300 ℃、 600 ℃ 下的摩擦磨损性能。 实验结果表明, 加入 Cr 元素的 WC-12Co-4Cr 复合涂层的硬度为 1050 HV0.5 比 WC- 12Co 涂层的 995 HV0.5 更高。 常温和 300 ℃ 下两组涂层的抗摩擦磨损性能基本相似, 其中常温下 WC-12Co-4Cr 复合涂层的摩擦系数和磨损率分别为 0.4、 2.61× 10-17 m3 (N·m)-1, 磨损机制为磨粒磨损。 而在高温 (600 ℃ ) 条 件下磨损机制转变为粘着磨损且抗磨损性能显著优于 WC-12Co 涂层; 摩擦系数为 0.62、 磨损率为 1.1× 10-15 m3 (N·m)-1, 相同条件下的 WC-12Co 涂层磨损率为 7.2× 10-15 m3 (N·m)-1。  相似文献   

19.
利用MM-1000摩擦实验机,分别在沙尘环境与干摩擦情况下,研究不同玻璃微珠含量(质量分数)铜基摩擦材料的摩擦磨损性能。结果表明:在摩擦过程中,玻璃微珠含量通过影响摩擦膜的形成而影响材料的摩擦磨损性能;在沙尘环境下,沙尘破坏材料表面摩擦膜致使材料的摩擦因数高于干摩擦情况下的摩擦因数,且材料的制动稳定性较差,线性磨损量随着玻璃微珠含量增加而增加;综合不同环境下的摩擦实验结果表明,含6%玻璃微珠的材料具有良好的摩擦学性能;添加2%和4%玻璃微珠材料的磨损机制主要为磨粒磨损与剥层磨损,但添加6%和8%玻璃微珠的材料以粘着磨损和磨粒磨损为主要磨损机制。  相似文献   

20.
为提高铜基粉末冶金摩擦材料的综合性能,采用粉末冶金法分别制备了Cu和Ni包覆的纳米SiO2(n-SiO2)颗粒增强的铜基摩擦材料.通过惯性试验,考核了摩擦材料的摩擦磨损和耐热性能;采用扫描电子显微镜(SEM)、显微硬度计研究了材料的显微组织、基体硬度和磨损机理.结果表明:表面改性n-SiO2可细化铜基摩擦材料的基体组织,显著提高铜基体的硬度;添加Cu/n-SiO2和Ni/n-SiO2的摩擦材料的耐磨性能比添加未表面改性n-SiO2的摩擦材料分别提高3.95倍和7.46倍;n-SiO2颗粒增强铜基摩擦材料的主要磨损机理为犁沟式磨料磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号