首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A newly identified member of the fibroblast growth factor (FGF) family, designated FGF-10, is expressed during development and preferentially in adult lung. The predicted FGF-10 protein is most related to keratinocyte growth factor (KGF, or FGF-7). The latter is unique among FGFs in that it binds and signals only through the FGF receptor (FGFR2b) isoform KGF receptor (KGFR) expressed specifically by epithelial cells. In order to examine the biological and biochemical properties of human FGF-10, we isolated the cDNA and expressed its encoded protein in bacteria. The recombinant protein (rFGF-10) was a potent mitogen for Balb/MK mouse epidermal keratinocytes with activity detectable at 0.1 nM and maximal at around 5 nM. Within this concentration range, FGF-10 did not stimulate DNA synthesis in NIH/3T3 mouse fibroblasts. rFGF-10 bound the KGFR with high affinity comparable to that of KGF, and did not bind detectably to either the FGFR1c (Flg) or FGFR2c (Bek) receptor isoforms. The mitogenic activity of FGF-10 could be distinguished from that of KGF by its different sensitivity to heparin and lack of neutralization by a KGF monoclonal antibody. These results indicate that FGF-10 and KGF have similar receptor binding properties and target cell specificities, but are differentially regulated by components of the extracellular matrix.  相似文献   

2.
Glia-activating factor (GAF) is a novel heparin-binding growth factor purified from the culture supernatant of a human glioma cell line. It shows a spectrum of activity slightly different from those of other known growth factors. We have isolated the cDNA which encodes human GAF. A homology search revealed that GAF would be the ninth member of the FGF family, and we therefore call it FGF-9. The human FGF-9 cDNA cloned by using oligonucleotide probes encoded a polypeptide consisting of 208 amino acids. Sequence similarity to other members of the FGF family was estimated to be around 30%. Two cysteine residues and other consensus sequences in family members were also well conserved in the FGF-9 sequence. FGF-9 was found to have no typical signal sequence in its N terminus like those in acidic FGF and basic FGF. Acidic FGF and basic FGF are known not to be secreted from cells in a conventional manner. However, FGF-9 was found to be secreted from cells after synthesis despite its lack of a typical signal sequence. It could be detected exclusively in the culture medium of cDNA-transfected COS cells. The amino acid sequence of proteins purified from culture supernatant of the CHO cell line, which was cDNA transfected and selected as a high producer of FGF-9, showed that no peptides were cleaved from the N terminus except the initiation methionine. The rat FGF-9 cDNA was also cloned, and the structural analysis indicated that the PGF-9 gene is highly conserved. Expression of the FGF-9 gene could be detected in the brain and kidney of the adult rat. Restricted gene expression in organs and the unique secretion nature of the protein suggest that FGF-9 plays a physiological role which differs from those of well-characterized acidic FGF and basic FGF.  相似文献   

3.
A new member of the fibroblast growth factor (FGF) family, FGF-13, has been molecularly cloned as a result of high throughput sequencing of a human ovarian cancer cell library. The open reading frame of the novel human gene (1419 bp) encodes for a protein of 216 a.a. with a molecular weight of 22 kDa. The FGF-13 sequence contains an amino-terminal hydrophobic region of 23 a.a. characteristic of a signal secretion sequence. FGF-13 is most homologous, 70% similarity at the amino acid level, to FGF-8. Northern hybridization analysis demonstrated prominent expression of FGF-13 in human foetal and adult brain, particularly in the cerebellum and cortex. In proliferation studies with BaF3 cells, FGF-13 preferentially activates cell clones expressing either FGF receptor variant, 3-IIIc or 4. The signal transduction pathways of FGF-13 and FGF-2 were compared in rat hippocampal astrocytes. The two FGFs induce an equivalent level of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK) and c-raf activation. However, FGF-13 is more effective than FGF-2 in inducing the phosphorylation of phospholipase C-gamma (PLC-gamma). Treatment of neuronal cultures from rat embryonic cortex with FGF-13 increases the number of glutamic acid decarboxylase immunopositive neurons, the level of high-affinity gamma-aminobutyric acid (GABA) uptake, and choline acetyltransferase enzyme activity. The GABAergic neuronal response to FGF-13 treatment is rapid with a significant increase occurring within 72 h. We have identified a novel member of the FGF family that is expressed in the central nervous system (CNS) and increases the number as well as the level of phenotypic differentiation of cortical neurons in vitro.  相似文献   

4.
Recent studies have shown that fibroblast growth factors (FGF) play an important role in the diverse cellular mechanisms involved with vertebrate development. One system which has received a great deal of attention is the developing limb in part because of the extensive epithelial-mesenchymal interactions that take place during this process. Because it closely parallels the developmental process of the limb and is a model for wound repair, the phenomenon of amphibian limb regeneration has been used to investigate the role of FGF in these processes. We have recently reported on the cloning and functional characterization of an FGF receptor (FGFR) isolated from amphibian regenerative tissue. In this report, we describe the isolation and characterization of an FGF-1 molecule from the newt, Notophthalmus viridescens. Amino acid sequence comparisons indicate that the newt FGF-1 exhibits between 79 to 83% identity with FGF-1 from mammalian and avian species. The full length cDNA of the newt FGF-1 was cloned into a prokaryotic expression vector and purified from E. coli. Although the newt FGF-1 shares a high degree of primary amino acid sequence similarity with other FGF-1 molecules, the recombinant protein was not detected in a Western blot analysis using a polyclonal antibody directed against mammalian FGF-1. Despite the antigenic divergence, the newt FGF-1 was capable of binding to NIH/3T3 and Chinese hamster ovary cells overexpressing mammalian and amphibian FGFRs with dissociation constants comparable to those reported for mammalian FGF-1. Newt FGF-1 could also be cross-linked to receptors on the surface of NIH/3T3 cells. In addition, it elicits a mitogenic response in NIH/3T3 cells indistinguishable from human recombinant FGF-1.  相似文献   

5.
Fibroblast growth factor 7 (FGF-7) or keratinocyte growth factor (KGF), is a potent and specific mitogen for epithelial cells. We have recently identified a novel human FGF-7 homologue, named FGF-10. To study the expression of this new FGF family member and its regulation in wound repair, we cloned the mouse FGF-10 (mFGF-10) cDNA. The encoded protein is 92% identical to human FGF-10 and 91% identical to rat FGF-10. When expressed in mammalian 293 cells, the mFGF-10 protein was glycosylated but remained cell- or extracellular matrix-associated. Upon addition of heparin, mFGF-10 protein was released into the media. mRNA encoding mFGF-10 was relatively abundant in lung, skin, brain and heart. In the skin, both FGF-7 and mFGF-10 were expressed in the dermal, but not the epidermal compartment. In contrast to FGF-7, mFGF-10 expression was not induced during cutaneous wound repair. In cultured fibroblasts, expression of mFGF-10 was strongly repressed by transforming growth factor beta and tumor necrosis factor alpha, whereas epidermal growth factor and interleukin-1beta had no effect. These results demonstrate a differential regulation of mFGF-10 and FGF-7 expression in vitro and during the wound healing process.  相似文献   

6.
Structure and expression of human fibroblast growth factor-10   总被引:2,自引:0,他引:2  
We isolated the cDNA encoding a novel member of the human fibroblast growth factor (FGF) family from the lung. The cDNA encodes a protein of 208 amino acids with high sequence homology (95.6%) to rat FGF-10, indicating that the protein is human FGF-10. Human FGF-10 as well as rat FGF-10 has a hydrophobic amino terminus ( approximately 40 amino acids), which may serve as a signal sequence. The apparent evolutionary relationships of human FGFs indicate that FGF-10 is closest to FGF-7. Chromosomal localization of the human FGF-10 gene was examined by in situ hybridization. The gene was found to map to the 5p12-p13 region. Human FGF-10 (amino acids 40 to 208 with a methionine residue at the amino terminus) was produced in Escherichia coli and purified from the cell lysate. Recombinant human FGF-10 (approximately 19 kDa) showed mitogenic activity for fetal rat keratinizing epidermal cells, but essentially no activity for NIH/3T3 cells, fibroblasts. The specificity of mitogenic activity of FGF-10 is similar to that of FGF-7 but distinct from that of bFGF. In structure and biological activity, FGF-10 is similar to FGF-7.  相似文献   

7.
The fibroblast growth factors (FGFs) play key roles in controlling tissue growth, morphogenesis, and repair in animals. We have cloned a novel member of the FGF family, designated FGF-18, that is expressed primarily in the lungs and kidneys and at lower levels in the heart, testes, spleen, skeletal muscle, and brain. Sequence comparison indicates that FGF-18 is highly conserved between humans and mice and is most homologous to FGF-8 among the FGF family members. FGF-18 has a typical signal sequence and was glycosylated and secreted when it was transfected into 293-EBNA cells. Recombinant murine FGF-18 protein (rMuFGF-18) stimulated proliferation in the fibroblast cell line NIH 3T3 in vitro in a heparan sulfate-dependent manner. To examine its biological activity in vivo, rMuFGF-18 was injected into normal mice and ectopically overexpressed in transgenic mice by using a liver-specific promoter. Injection of rMuFGF-18 induced proliferation in a wide variety of tissues, including tissues of both epithelial and mesenchymal origin. The two tissues which appeared to be the primary targets of FGF-18 were the liver and small intestine, both of which exhibited histologic evidence of proliferation and showed significant gains in organ weight following 7 (sometimes 3) days of FGF-18 treatment. Transgenic mice that overexpressed FGF-18 in the liver also exhibited an increase in liver weight and hepatocellular proliferation. These results suggest that FGF-18 is a pleiotropic growth factor that stimulates proliferation in a number of tissues, most notably the liver and small intestine.  相似文献   

8.
Fibroblast growth factor (FGF)-10 is a novel member of the FGF family. Although FGF-10 mRNA was preferentially expressed in the lung, the mRNA was also expressed, although at low levels, in the brain. We examined the localization of FGF-10 mRNA along with FGF-7 mRNA in the rat brain by in situ hybridization. FGF-10 mRNA showed spatially restricted expression in some regions of the brain, including the hippocampus, thalamus, midbrain and brainstem, although FGF-7 mRNA was not expressed in any of the brain regions examined. FGF-10 mRNA was strongly expressed in several restricted nuclei, especially in motor nuclei, including the oculomotor nucleus, dorsal motor nucleus of vagus, motor trigeminal nucleus, facial nucleus and hypoglossal nucleus. This localization pattern was distinct from those of aFGF, bFGF FGF-5 and FGF-9 mRNAs reported previously. The cellular localization of FGF-10 mRNA showed that the mRNA in the brain was preferentially expressed in neurons but not in glial cells. The present findings indicate that FGF-10, an additional member of the FGF family expressed in the brain, has a distinct role in the brain.  相似文献   

9.
Acidic fibroblast growth factor (FGF-1), keratinocyte growth factor (FGF-7), and FGF-10 are homologues with distinct specificity. In the presence of heparin, FGF-1 binds and activates in vitro all FGFR subtypes, while FGF-7 exhibits absolute specificity for the IIIb splice variant of FGFR2. FGF-10 exhibits a similar specificity but also binds the FGFR1IIIb isoform. Neither FGF-7 nor FGF-10 will bind to IIIc isoforms of FGFR. Molecular models of FGF, heparin, and the FGFR ectodomain suggested that sequences between beta-strands 10 and 12 of FGF may be important for the interaction of FGF with the heparin-FGFR ectodomain duplex. Site-directed mutants of FGF-7 and FGF-10 were prepared to test whether this domain might underlie failure of FGF-7 and FGF-10 to bind to the FGFRIIIc isoforms. Constructions with substitution of FGF-1 sequences spanning the entire C-terminus encoded in exon 3 or only C-terminal sequences spanning beta-strands 10 through 12 conferred ability on FGF-7 to bind to and activate FGFRIIIc without a significant loss in binding to or activation of FGFR2IIIb. A series of twelve different substitutions of shorter segments of FGF-1 sequences into the C-terminal portion of FGF-7 or FGF-10 revealed that substitution of GSCKRG for GIPVRG or the tri-peptide sequence KKN for NQK just N-terminal to it conferred dual activities on both the FGF-7 and FGF-10 backbones. The results suggest that the combined sequence domain, which we call the FGF glycine box (G-box), is a major determinant for the specificity of the binding of FGF to heparan sulfate-FGFR duplexes.  相似文献   

10.
OBJECTIVE: Fibroblast growth factor 9 (FGF-9) is a relatively new member of the FGF family isolated from the conditioned medium of a human glioblastoma cell line as a secreting type factor that exhibits a growth-stimulating effect on primary glial cells. To elucidate the roles of FGF-9 in human brain tumors, the expression and biological activities of FGF-9 were studied using culture cells and surgically obtained tumor specimens. METHODS: Measurement of FGF-9 and basic FGF in conditioned media of cell cultures was performed by using a sandwich enzyme immunoassay. The mitogenic effect of FGF-9 was evaluated by cell growth studies. FGF-9 expression in vivo was demonstrated by immunohistochemistry. RESULTS: One of 4 glioma cell lines and 4 of 16 human meningiomas examined actually secreted detectable amounts of FGF-9 proteins. In comparison, basic FGF production was detected from 3 of 4 glioma cell lines and 11 of 16 human meningiomas. Similarly to basic FGF, recombinant human FGF-9 significantly stimulated the in vitro cell proliferation in three of four glioma cell lines investigated in a dose-dependent manner. A time course growth study using U87 MG cells revealed an accelerated growth stimulation by FGF-9 after Day 4. The growth stimulatory activity was also shown in three of four human meningiomas studied. Moderate to strong immunoreactivity for FGF-9 was observed in 40 (82%) of 49 human brain tumors examined irrespective of origin, tumor type, grade of malignancy, or whether initial or recurrent. In contrast, strong immunostaining was localized in neurons in the normal human cerebral cortex. CONCLUSION: The present findings suggest that FGF-9 may be involved in the biology of human brain tumors with a possible importance in tumor cell growth. Whether the growth factor is more generally involved in oncogenesis of human tumors awaits further investigation.  相似文献   

11.
Signals released from Spemann's organizer, together with ventralizing factors such as BMPs, are necessary to pattern the dorsoventral axis of the vertebrate embryo. We report that a member of the FGF family, fgf-8, not secreted by the axial mesoderm but expressed in a dorsoventral gradient at the margin of the zebrafish gastrula, also contributes to the establishment of the dorsoventral axis of the embryo. Ectopic expression of FGF-8 leads to the expansion of dorsolateral derivatives at the expense of ventral and posterior domains. Moreover, FGF-8 displays some organizer properties as it induces the formation of a partial secondary axis in the absence of factors released from Spemann's organizer territory. Analysis of its interaction with the ventralizing factors, BMPs, reveals that overexpression of FGF-8 inhibits the expression of these factors in the ventral part of the embryo as early as blastula stage, suggesting that FGF-8 acts upstream of BMP2 and BMP4. We conclude that FGF-8 is involved in defining dorsoventral identity and is an important organizing factor responsible for specification of mesodermal and ectodermal dorsolateral territories of the zebrafish gastrula.  相似文献   

12.
Previously, we described cloning of three alternatively spliced mRNA forms of human FGF8, a, b, and e, of which the b form is the major expressed species in both normal and tumor prostatic epithelial cells. In this report, we describe construction and overexpression of sense and antisense sequences of either the full length FGF8b coding region (215-amino acids or 215aa), 103aa N-terminal part or a smaller N-terminal region (34aa), each including the 23aa putative signal peptide domain, via a retrovirus system. While the morphologic transforming activities of the sense 215aa and 103aa constructs were similar in NIH3T3 cells, 103aa displayed reduced soft agar clonogenic activity. The 34aa construct was practically inert in these assays, although its expression could mimic the ability of 215aa or 103aa in conferring cell growth under reduced serum condition. Overexpression of any of the three constructs in antisense orientation, however, was similarly effective in reversing the morphology and anchorage-independent growth property of FGF8b-transfected NIH3T3 cells. The expression of the antisense 215aa construct significantly reduced the growth rate of the human prostatic carcinoma DU145 cells and inhibited their soft agar clonogenic activity and in vivo tumorigenicity in nude mice. Taken together, these results identify N-terminal portions of FGF8 protein isoform for having the domains necessary for one or more of the biologic effects examined, and suggest that low levels of FGF8 expressed in prostatic epithelial cells may contribute significantly to their growth and tumorigenic properties.  相似文献   

13.
The potential role of the fibroblast growth factor (FGF) family during stretch-induced postnatal skeletal muscle hypertrophy was analyzed by using an avian wing-weighting model. After 2 or 11 days of weighted stretch, anterior latissimus dorsi (ALD) muscles were, on average, 34 (P < 0.01) and 85% (P < 0.01) larger, respectively, than unweighted ALD control muscles. By using quantitative RT-PCR, FGF-1 mRNA expression was found to be significantly decreased in ALD muscles stretched for 2 or 11 days. In contrast, FGF-4 and FGF-10 mRNA expression was significantly increased 2 days after initiation of stretch. FGF-2, FGF-10, fibroblast growth factor receptor 1, and FREK mRNA expression was significantly increased at 11 days poststretch. Increases in FGF-2 and FGF-4 protein could be detected throughout the myofiber periphery after 11 days of stretch. On a cellular level, FGF-2 and FGF-4 proteins were differentially localized. This differential expression pattern and protein localization of the FGF family in response to stretch-induced hypertrophy suggest distinct roles for individual FGFs during the postnatal hypertrophy process.  相似文献   

14.
Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5' end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3' untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.  相似文献   

15.
FRS2 is a lipid-anchored docking protein that plays an important role in linking fibroblast growth factor (FGF) and nerve growth factor receptors with the Ras/mitogen-activated protein (MAP) kinase signaling pathway. In this report, we demonstrate that FRS2 forms a complex with the N-terminal SH2 domain of the protein tyrosine phosphatase Shp2 in response to FGF stimulation. FGF stimulation induces tyrosine phosphorylation of Shp2, leading to the formation of a complex containing Grb2 and Sos1 molecules. In addition, a mutant FRS2 deficient in both Grb2 and Shp2 binding induces a weak and transient MAP kinase response and fails to induce PC12 cell differentiation in response to FGF stimulation. Furthermore, FGF is unable to induce differentiation of PC12 cells expressing an FRS2 point mutant deficient in Shp2 binding. Finally, we demonstrate that the catalytic activity of Shp2 is essential for sustained activation of MAP kinase and for potentiation of FGF-induced PC12 cell differentiation. These experiments demonstrate that FRS2 recruits Grb2 molecules both directly and indirectly via complex formation with Shp2 and that Shp2 plays an important role in FGF-induced PC12 cell differentiation.  相似文献   

16.
The fadH gene coding for an NADPH-dependent 2.4-dienoyl-CoA reductase from Escherichia coli has been cloned by the polymerase chain reaction. This gene is located at 67.65 min on the E. coli chromosome. The complete open reading frame contains 2019 bp coding for the processed protein of 671 amino acid residues, with a calculated molecular mass of 72.55 kDa, which lacks the N-terminal methionine. Construction and expression of the plasmid pNDH, which contained the fadH gene under the control of the T7 promoter, resulted in a 110-fold increase in the reductase activity above the level detected in E. coli cells containing the control vector. The kinetic parameters of the purified reductase were determined to be 50 microM and 2.3 microM for the Km values of NADPH and 2-trans, 4-trans-decadienoyl-CoA, respectively, and 16 s(-1) for the k(cat) value. Analysis of the kinetic data revealed that the reaction catalyzed by this enzyme proceeds via a ping-pong mechanism. The observed dissimilarity between the E. coli and mammalian 2,4-dienoyl-CoA reductase sequences suggests that they have evolved from distinct ancestral genes. Sequence analysis also suggests that the N-terminal part of the E. coli reductase contains the FAD-binding domain whereas the NADPH-binding domain is located in the C-terminal region of the protein.  相似文献   

17.
Proteins of the fibroblast growth factor (FGF) family play diverse roles in embryonic development, angiogenesis, and wound healing. The most well studied targets of FGF activity typically are cells of mesodermal and neuroectodermal origin; in addition, expression of FGF-1 (acidic FGF) is increased at several sites of chronic immunologic injury, and recent studies show that FGF-1 also may interact with cells of the immune system. In some human T cells, FGF-1 can induce signals necessary for production of interleukin-2, a key cytokine required for T cell proliferation. To better characterize the interaction of FGF-1 with FGF receptors on T cells, a fusion protein was constructed containing a portion of the constant region of human IgG1 (Fc) at the amino terminus of FGF-1. The Fc-FGF-1 fusion protein retained FGF function as determined by stimulation of tyrosine phosphorylation and DNA synthesis in NIH 3T3 cells. Binding of the intact fusion protein to FGF receptor 1 (FGFR1) on T cells was demonstrated by immunoprecipitation of the receptor bound to Fc-FGF-1 and by flow cytometry showing binding of fusion protein to T cells expressing FGFR1. This functional Fc-FGF-1 protein should prove useful in identifying FGFR-expressing cells.  相似文献   

18.
We have previously characterized the release of the signal peptide sequence-less fibroblast growth factor (FGF) prototype, FGF-1, in vitro as a stress-induced pathway in which FGF-1 is released as a latent homodimer with the p40 extravesicular domain of p65 synaptotagmin (Syn)-1. To determine the biologic relevance of the FGF-1 release pathway in vivo, we sought to resolve and characterize from ovine brain a purified fraction that contained both FGF-1 and p40 Syn-1 and report that the brain-derived FGF-1:p40 Syn-1 aggregate is associated with the calcium-binding protein, S100A13. Since S100A13 binds the anti-inflammatory compound amlexanox and FGF-1 is involved in inflammation, we examined the effects of amlexanox on the release of FGF-1 and p40 Syn-1 in response to stress in vitro. We report that while amlexanox was able to repress the heat shock-induced release of FGF-1 and p40 Syn-1 in a concentration-dependent manner, it had no effect on the constitutive release of p40 Syn-1 from p40 Syn-1 NIH 3T3 cell transfectants. These data suggest the following: (i) FGF-1 is associated with Syn-1 and S100A13 in vivo; (ii) S100A13 may be involved in the regulation of FGF-1 and p40 Syn-1 release in response to temperature stress in vitro; and (iii) the FGF-1 release pathway may be accessible to pharmacologic regulation.  相似文献   

19.
The lpxC (envA) gene of Escherichia coli encodes UDP-3-O-acyl-GlcNAc deacetylase, the second and committed step of lipopolysaccharide biosynthesis. Although present in all gram-negative bacteria examined, the deacetylase from E. coli is the only example of this enzyme that has been expressed and purified. In order to examine other variants of this protein, we cloned the Pseudomonas aeruginosa deacetylase structural gene from a lambda library as a 5.1-kb EcoRI fragment. The LpxC reading frame encodes an inferred protein of 33,435 Da that is highly homologous to the E. coli protein and that possesses a nearly identical hydropathy profile. In order to verify function, we subcloned the P. aeruginosa lpxC gene into the T7-based expression vector pET11a. Upon induction at 30 degrees C, this construct yielded active protein to approximately 18% of the soluble fraction. We devised a novel, rapid, and reproducible assay for the deacetylase which facilitated purification of the enzyme in three steps. The purified recombinant protein was found to be highly sensitive to EDTA yet was reactivated by the addition of excess heavy metal, as was the case for crude extracts of P. aeruginosa. In contrast, deacetylase activity in crude extracts of E. coli was insensitive to EDTA, and the extracts of the envA1 mutant were sensitive in a time-dependent manner. The lpxC gene has no significant homology with amidase signature sequences. Therefore, we assign this protein to the metalloamidase family as a member with a novel structure.  相似文献   

20.
The major outer membrane protein (OMP) of Actinobacillus actinomycetemcomitans is an OmpA homolog that demonstrates electrophoretic heat modifiability. The gene encoding this protein was isolated from a genomic library of A. actinomycetemcomitans NCTC 9710 by immunoscreening with serum from a patient with localized juvenile periodontitis. Expression of the cloned gene in Escherichia coli and subsequent Western blot analysis revealed a protein with an approximate molecular mass of 34 kDa. The amino acid sequence predicted from the cloned gene demonstrated that the mature protein had a molecular mass of 34,911 Da and significant identity to members of the OmpA family of proteins. We have named the major OMP of A. actinomycetemcomitans Omp34, and its corresponding gene has been named omp34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号