首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
1. Simultaneous recordings of tension and [Ca2+]i during NANC-mediated relaxation were made in the rat anococcygeus muscle under various conditions. 2. In muscles precontracted with guanethidine, nitrergic stimulations at 2 Hz produced a rapid decrease in both the tension and [Ca2+]i. 3. The nitric oxide synthase inhibitor, NG-nitro-L-Arginine (NOLA, 100 mumol/L) completely abolished the decreases in the [Ca2+]i and force response of the NANC-mediated relaxation. 4. Noradrenergic-mediated contractions elicited by electrical field stimulation were potentiated by the addition of NOLA. In the absence of NOLA, the motor responses were larger in magnitude at 10 Hz stimulation than at 2 Hz. After NOLA, both the force response and the associated rise in [Ca2+]i were substantially increased in comparison to the control stimulations. Proportionately the potentiation of the 2 Hz response was of a far greater magnitude than that of the 10 Hz response. 5. The guanylate cyclase inhibitor methylene blue (10 mumol/L), partially inhibited the force and [Ca2+]i response of the NANC relaxation. 6. Following exposure of the muscles to the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, cyclopiazonic acid, (10 mumol/L) the responses to NANC stimulation were inhibited. The attenuated relaxation response displayed a bi-phasic timecourse and the Ca2+ change in comparison to that of the control was markedly smaller. In some cases, a relaxation was observed with no detectable change in the [Ca2+]i. 7. The results suggest that part of the relaxation response observed with NANC-mediated relaxation in the rat anococcygeus is dependent on Ca2+ sequestration into the sarcoplasmic reticulum. However, other Ca2+ lowering mechanisms and possible Ca2+ independent mechanisms may also contribute to the NANC relaxation response.  相似文献   

2.
Intracellular pH (pHi) is elucidated to be an important regulator of various cell functions, but the role of pHi in smooth muscle contraction remains to be clarified. The purpose of the present study is to examine the effects of cell alkalinization by exposure to NH4Cl on cytosolic Ca2+ level ([Ca2+]i) and on muscle tone. We attempted simultaneous measurements of both [Ca2+]i and contractile force in rat isolated thoracic aorta from which the endothelium was removed. NH4Cl (10-80 mM) increased both [Ca2+]i and muscle tone in the presence of external Ca2+. These responses were reproducible. The removal of Ca2+ from the nutrient solution partially inhibited the rise in [Ca2+]i and the smooth muscle contraction induced by NH4Cl. In addition, the Ca2+ channel blocker verapamil also partially attenuated the responses to NH4Cl. The NH4Cl-induced responses were gradually reduced as NH4Cl was repeatedly added in a Ca(2+)-free solution. Norepinephrine (NE, 1 microM) induced a transient increase in [Ca2+]i and sustained contraction in the absence of external Ca2+, and the subsequent application of NE had little effect on [Ca2+]i. After internal Ca2+ stores were depleted by exposure to NE, the subsequent application of NH4Cl induced increases in [Ca2+]i and tension of the aorta in a Ca(2+)-free solution. These results suggest that NH4Cl mainly evokes Ca2+ release from the internal Ca2+ stores that are not linked with adrenergic alpha-receptor and causes Ca2+ influx through voltage-dependent Ca2+ channels in the vascular smooth muscle.  相似文献   

3.
The role of Ca++ as an intracellular messenger in leukotriene (LT)D4-induced muscle contraction was investigated by measuring force development and elevation in cytosolic Ca++ concentration simultaneously in strips of guinea pig ileal longitudinal muscle loaded with the fluorescent calcium indicator Fura 2. Upon addition of LTD4, a simultaneous increase in tension and cytosolic calcium concentration, [Ca++]i, was observed. Cumulative applications of LTD4 induced concentration-dependent increases in both muscle tension and [Ca++]i, being the half-maximal effect reached at approximately 6 to 9 nM. A statistically significant positive correlation (r = 0.993, P < .001) exists between the two parameters examined. Removal of calcium in the bathing solution, accompanied by addition of 7.5 mM EGTA, completely prevented any increase in either calcium levels or force development, thus indicating a role for Ca++ influx, rather than a release from intracellular stores. All of the LTD4 antagonists tested were able to counteract the effect of the leukotriene on both [Ca++]i and tension increase. However, although LY171883 shifted both of the LTD4 curves to the right in a parallel fashion, FPL 55712 and ICI 198,615 behaved as non-competitive antagonists in reversing the effect of LTD4 on [Ca++]i and tension. Thus, these results strongly suggest that changes in muscle tension induced by LTD4 are attributable to changes in cytosolic free Ca++ concentrations in guinea pig ileum.  相似文献   

4.
In bovine tracheal smooth muscle, carbachol (CCh, 1 microM) and high K+ (72.7 mM) induced sustained increases in cytosolic Ca2+ level ([Ca2+]i), myosin light chain (MLC) phosphorylation and force of contraction. Forskolin (FK, 1-10 microM) inhibited the CCh-induced increase in [Ca2+]i, MLC phosphorylation and force in parallel. In contrast, FK inhibited the high K(+)-induced contraction and MLC phosphorylation without changing [Ca2+]i. In the absence of extracellular Ca2+ (with 0.5 mM EGTA), CCh (10 microM) and caffeine (20 mM) induced transient increase in [Ca2+]i and contractile force by releasing Ca2+ from cellular store. FK strongly inhibited the CCh-induced Ca2+ transient, but failed to inhibit the caffeine-induced Ca2+ transient. In the absence of external Ca2+, 12-deoxyphorbol 13-isobutylate (DPB, 1 microM) induced sustained contraction without increase in [Ca2+]i and MLC phosphorylation. FK inhibited this contraction without changing [Ca2+]i. In permeabilized muscle, Ca2+ induced contraction in a concentration-dependent manner. FK (10 microM) and cAMP (1-100 microM) shifted the Ca(2+)-force curve to the higher Ca2+ levels. CCh with GTP, GTP gamma S or DPB enhanced contraction in the presence of constant level of Ca2+. Forskolin and cAMP also inhibited the enhanced contractions in the permeabilized muscle. In the permeabilized, thiophosphorylated muscle, ATP induced contraction in the absence of Ca2+. cAMP (300 microM) had no effect on this contraction. These results suggest that forskolin inhibits agonist-induced contraction in tracheal smooth muscle by multiple mechanisms of action; 1) inhibition of MLC phosphorylation by reducing Ca2+ influx and Ca2+ release, 2) inhibition of MLC phosphorylation by changing the MLC kinase/phosphatase balance, and 3) inhibition of regulatory mechanism which is not dependent on MLC phosphorylation.  相似文献   

5.
We investigated the role of 20 kDa myosin light chain (MLC20) phosphorylation in contractions following protein kinase C (PKC) activation by 12-deoxyphorbol-13-isobutyrate (DPB) in rabbit aortae. DPB induced a sustained contraction and phosphorylation of MLC20 independent of a change in cytosolic Ca2+ ([Ca2+]i). Phosphorylation on Ser19 of MLC20, which is a target site of MLC kinase (MLCK), was 9.2 +/- 5.1% and 22.3 +/- 4.9% of the phosphorylation caused by KCl, at 5 and 30 min of application of DPB, respectively. When KCl-precontracted muscles were rinsed with Ca2+-free, EGTA solution, [Ca2+]i rapidly declined, MLC20 was dephosphorylated and the tension decreased. If DPB was present in the Ca2+-free solution, the relaxation and the dephosphorylation of either total MLC20 or Ser19 were inhibited. The phospholipase A2 inhibitor ONO-RS-082 partially antagonized the effects of DPB on the tension and the MLC20 dephosphorylation. In Ca2+-free solution, DPB induced a contraction smaller than that in normal solution without an increase in MLC20 phosphorylation, and the contraction was also sensitive to ONO-RS-082. These results suggest that a part of MLC20 phosphorylation following PKC activation is due to inhibition of MLC20 phosphatase and the phosphorylation is responsible for the contraction. Furthermore, a mechanism independent of [Ca2+]i and phosphorylation may play a significant role in the PKC-dependent contraction. The involvement arachidonic acid is suggested, not only in the inhibition of dephosphorylation but also in the Ca2+-independent regulation of contractile proteins.  相似文献   

6.
Smooth muscle contraction is primarily regulated not only by changes in cytosolic Ca2+ concentrations ([Ca2+]i) but also by changes in the force/[Ca2+]i ratio. The use of membrane-permeabilization technique facilitated demonstration of an increase in the level of force at constant [Ca2+]i (Ca2+ sensitization). It was clarified that Rho-associated kinase (Rho-kinase) is a novel mediator of Ca2+ sensitization of the smooth muscle contraction, by introducing the recombinant catalytic domain of Rho-kinase into the cytosol of vascular smooth muscle permeabilized with beta-escin. This review article focuses on novel mechanisms, by which activation of receptor-coupled G-protein(s) increases Ca2+ sensitivity of the contractile apparatus in smooth muscle: Rho-kinase and protein kinase C.  相似文献   

7.
The existence of G protein-dependent and -independent mechanisms activated by sodium fluoride was examined in muscle cells isolated separately from the circular and longitudinal layers of guinea pig intestine. The cells were transiently permeabilized by incubation with Trans. Port Reagent in the presence or absence of GDP beta S (100 microM) and then re-sealed. In the absence of GDP beta S, NaF (1 mM) induced contraction and caused an increase in [Ca2+]i, IP3 and diacylglycerol levels and in protein kinase C (PKC) activity in both cell types. In the presence of GDP beta S, the increases in IP3, DAG and PKC were abolished whereas contraction and the increase in [Ca2+]i were partly inhibited. Residual contraction and [Ca2+]i were abolished by the Ca2+ channel blocker, methoxyverapamil. We conclude that contraction and Ca2+ mobilization induced by NaF is mediated by G protein activation as well as by a G protein-independent mechanism involving activation of plasmalemmal Ca2+ channels.  相似文献   

8.
The direct inotropic effect of angiotensin II on the myocardium is still controversial and little information exists as to its potential modification by heart disorders. Therefore, this study performed simultaneous measurements of isometric force and intracellular Ca2+ concentrations ([Ca2+]i) in left ventricular papillary muscles from sham-operated and aortic-banded rats at 10 weeks post-surgery. Angiotensin II (10(-6) M) induced a reduction of peak systolic [Ca2+]i (0.56 +/- 0.03 to 0.48 +/- 0.04 microM; P<0.05) and a parallel but insignificant diminution of developed tension (10.5 +/- 1.3 to 9.6 +/- 0.8 mN/mm2) in normal papillary muscles from sham-operated animals. Hypertrophied papillary muscles from aortic-banded rats demonstrated a significant decline in both peak systolic [Ca2+]i (0.51 +/- 0.02 to 0.44 +/- 0.01 microM; P<0.05) and developed tension (8.4 +/- 1.1 to 6.8 +/- 1.7 mN/mm2; P<0.05) after addition of angiotensin II. The time courses of the mechanical contraction and the intracellular Ca2+ signal were prolonged by angiotension II in both groups. Isoproterenol dose-dependently increased developed tension and peak systolic [Ca2+]i in papillary muscles from sham-operated rats. In contrast, the positive inotropic response to isoproterenol was markedly reduced in hypertrophied muscles despite a seemingly unimpaired increase in peak systolic [Ca2+]i. Pretreatment with angiotensin II (10(-6) M) resulted in a significant attenuation of the systolic [Ca2+]i response to isoproterenol stimulation in both normal and hypertrophied papillary muscles. Neither the bradykinin B2 antagonist icatibent (10(-6) M) nor the nitric oxide (NO) inhibitor L-NMMA (10(-6) M) abolished the depressant effects of angiotension II. Thus, ANG II induces a parallel decline of the mechanical performance and Ca2+ availability in rat myocardium. These effects are more distinct in hypertrophied than in normal muscle and become accentuated during beta-adrenergic stimulation. The underlying mechanism is not associated with the NO pathway but might involve a negative functional coupling between the angiotensin and beta-adrenergic-receptor complex.  相似文献   

9.
The present study elucidated the precise mechanism of 5-hydroxytryptamine (5-HT)-induced increase of intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells isolated from rat aortic media. [Ca2+]i was measured using fluorescent Ca2+ indicator, fura-2. 5-HT caused a dose-dependent increase in [Ca2+]i, which was completely inhibited by ketanserin. alpha-Methyl-5-HT had an equipotent effect to 5-HT. Diltiazem at 10 microM partially suppressed the 5-HT-induced increase in [Ca2+]i. 5-HT also augmented Mn2+ influx, when monitored by Mn2+ quenching of fura-2 fluorescence. When extracellular Ca2+ (1.3 mM) was removed, a decrease in resting level and a small, transient increase in [Ca2+]i were observed. 5-HT stimulation also induced an increase in the production of inositol triphosphate. 5-HT-induced increase in [Ca2+]i was significantly, but partially inhibited by staurosporin and H-7. Phorbol 12-myristate 13-acetate induced an increase in [Ca2+]i, which was abolished by removal of extracellular Ca2+. 5-HT-induced increase in [Ca2+]i was not affected by the pretreatment with pertussis toxin (PTX), and was not accompanied by a change in cyclic AMP content. These results suggest that, in cultured rat aortic smooth muscle cells, 5-HT increases [Ca2+]i via 5-HT2 receptor subtype by inducing influx of extracellular Ca2+ partially through L-type voltage-dependent Ca2+ channel, as well as by mobilizing Ca2+ from its intracellular stores. Activation of protein kinase C may be positively involved in the regulatory mechanism of Ca2+ influx, but PTX-sensitive G protein and cyclic AMP seem to be not involved.  相似文献   

10.
We investigated the effects of isoproterenol aryl glass beads on the electrical properties of cardiac muscle and related these to our previous results concerning biochemical and contractile effects (Ingebretsen et al., Circ, Rs., 40: 474-484, 1977). Beads (10-15) were placed near one end to guinea pig papillary muscles mounted horizontally in a bath perfused with Krebs-Henseleit solution at 30 degrees C and stimulated at 0.2 Hz. The beads produced increased tension and elevation and slight lengthening of the plateau potential when [k+]o = 3.8 mM. After depolarization to a resting potential of -49 mV with [K+]o = 22 mM, isoproterenol beads restored contraction to a comparable extent as occurred with 10(-8) M soluble drug. During field stimulation, action potentials were initiated at the site of bead application and spread decrementally. When beads were placed distal to the site of point stimulation, virtually no excitation could be obtained from cells in the vicinity of the beads. When they were placed close to the stimulating electrode, the beads increased excitability and typical slow action potentials spread to the other end of the muscle. These potentials had the characteristics associated with the slow inward Ca2+ current. The slow channel blocker, D-600, blocked responses to isoproterenol beads. Tetrodotoxin caused responses similar to those obtained with K+ depolarization. The beads probably act by stimulating only a small fraction of the papillary muscle catecholamine receptors. Spread of action potentials from these sites and propagated tension depend on Ca2+ influx, but the nature of an intermediate messenger involved in the propagation of contractions is unknown.  相似文献   

11.
While insulin is known to promote vascular smooth muscle (VSM) relaxation, it also enhances endothelin-1 (ET-1) secretion and action in conditions such as NIDDM and hypertension. We examined the effect of insulin pretreatment on intracellular free calcium ([Ca2+]i) responses to ET-1 in cultured aortic smooth muscle cells (ASMCs) isolated from Sprague-Dawley (SD) rats and measured ET(A) receptor characteristics and ET-1-evoked tension responses in aorta obtained from insulin-resistant, hyperinsulinemic Zucker-obese (ZO) and control Zucker-lean (ZL) rats. Pretreatment of rat ASMCs with insulin (10 nmol/l for 24 h) failed to affect basal [Ca2+]i levels but led to a significant increase in peak [Ca2+]i response (1.7-fold; P < 0.01) to ET-1. The responses to IRL-1620 (an ET(B) selective agonist), ANG II, and vasopressin remained unaffected. ET-1-evoked peak [Ca2+]i responses were significantly attenuated by the inclusion of the ET(A) antagonist, BQ123, in both groups. The ET(B) antagonist, BQ788, abolished [Ca2+]i responses to IRL-1620 but failed to affect the exaggerated [Ca2+]i responses to ET-1. Saturation binding studies revealed a twofold increase (P < 0.01) in maximal number of binding sites labeled by 125I-labeled ET-1 in insulin-pretreated cells and no significant differences in sites labeled by 125I-labeled IRL-1620 between control and treatment groups. Northern blot analysis revealed an increase in ET(A) mRNA levels after insulin pretreatment for 20 h, an effect that was blocked by genistein, actinomycin D, and cycloheximide. Maximal tension development to ET-1 was significantly greater (P < 0.01), and microsomal binding studies using [3H]BQ-123 revealed a twofold higher number of ET(A) specific binding sites (P < 0.01) in aorta from ZO rats compared with that of ZL rats. These data suggest that insulin exaggerates ET-1-evoked peak [Ca2+]i responses via increased vascular ET(A) receptor expression, which may contribute to enhanced vasoconstriction observed in hyperinsulinemic states.  相似文献   

12.
Papaverine (0.3-100 microM) more potently inhibited phenylephrine (1 microM)-induced contraction than 65 mM K+-induced contraction of the aorta, while it equally inhibited contractions induced by 65 mM K+ and carbachol (1 microM) in ileal smooth muscle. In phenylephrine-treated aorta, papaverine (1-10 microM) increased the cAMP and cGMP content. However, in carbachol-treated ileum, 30 microM papaverine partially increased the cAMP content while it maximally relaxed the preparation. In fura2-loaded aorta, papaverine (0.3-10 microM) inhibited both the contraction and the increase in intracellular Ca2+ level ([Ca2+]i) induced by phenylephrine in parallel. However, papaverine inhibited carbachol-induced contraction with only a small decrease in [Ca2+]i. Papaverine (1-30 microM) inhibited the carbachol-induced increase in oxidized flavoproteins, an indicator of increased mitochondrial oxidative phosphorylation, in ileal smooth muscle whereas it did not change the phenylephrine-induced increase in the aorta. These results suggest that papaverine inhibits smooth muscle contraction mainly by the accumulation of cAMP and/or cGMP due to the inhibition of phosphodiesterase in the aorta whereas, in ileal smooth muscle, papaverine inhibits smooth muscle contraction mainly by the inhibition of mitochondrial respiration.  相似文献   

13.
1. Effects of adrenomedullin and alpha-calcitonin gene-related peptide (CGRP) on the contractions and cytosolic Ca2+ concentrations ([Ca2+]i) of the rat aorta and porcine coronary artery were investigated. Characteristics of the receptors mediating the effects of adrenomedullin and alpha-CGRP were also investigated. 2. Adrenomedullin and alpha-CGRP caused a concentration-dependent relaxation in the rat aorta contracted with noradrenaline. The IC50 values for adrenomedullin and alpha-CGRP were 2.4 nM and 4.0 nM, respectively. The relaxant effects of these peptides were abolished by removal of the endothelium and significantly attenuated by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (L-NMMA, 100 microM), but not by a cyclo-oxygenase inhibitor, indomethacin (10 microM). 3. Adrenomedullin and alpha-CGRP increased the endothelial [Ca2+]i in the rat aorta with endothelium, whereas they did not change [Ca2+]i in the smooth muscle. 4. An antagonist of the CGRP1 receptor, CGRP (8-37), antagonized the relaxant effects of alpha-CGRP and the beta-isoform of CGRP (beta-CGRP) but not those of adrenomedullin in the rat aorta. 5. In the porcine coronary artery contracted with U46619, adrenomedullin and alpha-CGRP caused a concentration-dependent relaxation with an IC50 of 27.6 and 4.1 nM, respectively. Removal of the endothelium altered neither the IC50 values nor the maximal relaxations induced by adrenomedullin or alpha-CGRP. When the artery was contracted with high K+ solution (72.7 mM), these peptides caused a small relaxation. 6. Adrenomedullin and alpha-CGRP increased cyclic AMP content and decreased the smooth muscle [Ca2+]i in the porcine coronary artery. 7. CGRP (8-37) significantly antagonized the relaxant effects of adrenomedullin and alpha-CGRP in the porcine coronary artery. However, it had little effect on the relaxations induced by the beta-isoform of CGRP (beta-CGRP). 8. These results suggest that in the rat aorta, adrenomedullin and alpha-CGRP increase the endothelial [Ca2+]i, activate nitric oxide synthase and release nitric oxide, without a direct inhibitory action on smooth muscle. In the porcine coronary artery, in contrast, adrenomedullin and alpha-CGRP directly act on smooth muscle, increase cyclic AMP content, decrease the smooth muscle [Ca2+]i and inhibit contraction. The rat aortic endothelium seems to express the CGRP receptor which is sensitive to alpha-CGRP, beta-CGRP and CGRP (8-37) and the adrenomedullin specific receptor. The porcine coronary smooth muscle, in contrast, seems to express two types of CGRP receptor; one of which is sensitive to alpha-CGRP, CGRP (8-37) and adrenomedullin and the other is sensitive only to beta-CGRP.  相似文献   

14.
A method allowing measurement of the concentration of [3H]ryanodine binding sites in small skeletal muscle specimens (> 10-20 mg) was developed. A membrane fraction containing 87% of the [3H]ryanodine binding sites of the tissue and exhibiting one single KD of 18-27 nmol l-1 in rat and 8 nmol l-1 in human muscles (p < 0.05) was obtained. Maximum binding to rat EDL and soleus muscles equalled 59.1 and 16.2 pmol g-1 wet wt, whereas in human gluteus muscles binding was 12.3 pmol g-1 wet wt. The [3H]ryanodine binding showed a dependency on Mg2+ and pH similar to previously published results. As measured by Ca2+ selective mini-electrodes, the [Ca2+] causing 50% of maximum [3H]ryanodine binding (K0.5) was 200-400 nmol l-1 for different muscles. [Ca2+] higher than 1 mmol l-1 caused strong inhibition of the [3H]ryanodine binding, and both high and low [Ca2+] caused rapid dissociation of the complex. At ionic strength lower than 100 mmol l-1, more than 50% of the [3H]ryanodine was bound to particles with size less than 1.2 microns which were not retained by GF/C filters. Thus, we have obtained an almost complete quantitative recovery of functional RyRs from small muscle specimens exhibiting high affinity for Ca2+, which stimulated ligand binding.  相似文献   

15.
Sulfhydryl reagents such as tert-butyl hydroperoxide (TBHP) have been shown to increase cytosolic Ca2+ concentration ([Ca2+]i) in rat hepatocytes in a way that resembles responses to Ca(2+)-mobilizing hormones (Saikada, I., Thomas, A. P., and Farber, J. L. (1991) J. Biol. Chem. 266, 717-722; Rooney, T. A., Renard, D. C., Sass, E. J., and Thomas, A. P. (1991) J. Biol. Chem. 266, 12272-12282) and to increase the amount of Ca2+ released by inositol 1,4,5-trisphosphate ((1,4,5)IP3) from permeable rat liver cells (Rooney et al., 1991, op. cit.; Missiaen, L., Taylor, C. W., and Berridge, M. J. (1991) Nature 352, 241-244; Renard, D. C., Seitz, M. B., and Thomas, A. P. (1992) Biochem. J. 284, 507-512). The effects of sulfhydryl reagents were studied in fura-2-injected rat and guinea pig hepatocytes and compared with the actions of cAMP (Burgess, G. M., Bird, G. St. J., Obie, J. F., and Putney, J. W., Jr. (1991) J. Biol. Chem. 261, 4772-4781). In rat liver cells, the increases in [Ca2+]i induced by TBHP and thimerosal were prevented by microinjection of the cells with the (1,4,5)IP3 receptor antagonist heparin. In guinea pig hepatocytes, TBHP was not able to increase [Ca2+]i unless the cells were pretreated with angiotensin II to raise endogenous levels of (1,4,5)IP3 or were first injected with a sub-threshold concentration of inositol 2,4,5-trisphosphate ((2,4,5)IP3). The responses to TBHP in (2,4,5)IP3-injected guinea pig cells were also blocked by heparin. In many respects, the actions of TBHP appeared to be similar to those of cAMP, which has previously been shown to increase sensitivity to (1,4,5)IP3 in intact guinea pig hepatocytes (Burgess et al., 1991, op. cit.). TBHP also mimicked the effect of cAMP-dependent kinase (PKA) in permeabilized guinea pig hepatocytes by increasing the amount of Ca2+ released by (1,4,5)IP3. The responses to TBHP and cAMP in (2,4,5)IP3-injected guinea pig hepatocytes differed, however, in that the increase in [Ca2+]i evoked by elevating intracellular cAMP was greatly reduced by Wiptide, an inhibitor of PKA, while Wiptide had no effect on the Ca2+ transients induced by TBHP. This provides evidence that the sensitizing effect of TBHP is not mediated by PKA and is more likely to be a direct effect on the inositol trisphosphate receptor. It is possible, however, that the sulfhydryl reagents and PKA act on a common regulatory site on the receptor protein.  相似文献   

16.
Substitution of thiocyanate ions (SCN-) for chloride ions (Cl-) in the extracellular medium of aortic rings and strips causes a biphasic contractile response; initial relaxation followed by sustained contraction. Alterations in these responses are sex-specific, and may elucidate fundamental differences in vascular function between males and females. In order to investigate the role of changes in intracellular Ca2+ ([Ca2+]i) in these changes in tension, we investigated effects of SCN- on [Ca2+]i and ionic currents in vascular smooth muscle cells (VSMC). Extracellular substitution of SCN- for Cl- caused a biphasic change in [Ca2+]i. Initially, [Ca2+]i decreased, reaching a minimum within 1-2 min, subsequently returned to original levels within 4-5 min, and then increased to a higher plateau over the next 10 minutes. This pattern of change in [Ca2+]i is identical to the pattern of tension changes in aortic rings, but it occurs somewhat faster. Partial substitution of SCN- for Cl- elicited increased, but no preceding decrease in [Ca2+]i. In the absence of external Ca2+, anion substitution elicited the decrease in [Ca2+]i but not the subsequent increase. Verapamil (1 microM) blocked the increased [Ca2+]i phase but not the decreased [Ca2+]i phase; whereas, R+ verapamil (up to 5 microM for 20 min), an inactive enantiomer, caused no change. Ionic current measurements obtained using whole cell patch and current clamp techniques revealed two responses to anion substitution: (a) a rapid, transient outward shift in holding current, and (b) a sustained increase in peak current and a hyperpolarizing shift in voltage sensitivity of Ca2+ channels. The calcium channel blocker PN200-110 blocked SCN(-)-enhanced current but had no effect on the changes in holding current. S- verapamil, but not R+ verapamil, reduced SCN(-)-enhanced current. In current clamp mode, SCN- caused an initial hyperpolarization followed by a slow depolarization punctuated by spikes. Thus, SCN- causes changes in vascular smooth muscle [Ca2+]i that could underlie both phases of its effects on tension in isolated aortas and may be explained by the following model: an initial outward shift in current causes hyperpolarization with a consequent decrease in cell excitability, and the somewhat slower increase in Ca2+ channel excitability eventually leads to enhanced calcium influx and tension. These data shed light on possible mechanisms underlying gender-related differences in VSMC physiology.  相似文献   

17.
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca(2+)-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of -60 mV, the muscarine-induced [Ca2+]i rise, especially its sustained phase, decreased in magnitude. Intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca(2+)-channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

18.
We investigated the effects of palmitoyl-L-alpha-lysophosphatidylcholine on the contractile responses of the endothelium-denuded rat aorta to high K+, noradrenaline, UK14,304 (5-bromo-6-[2-imidazolin-2-ylamino]-quinoxaline) (a selective alpha2 adrenoceptor agonist) and phorbol 12-myristate 13-acetate (PMA). Lysophosphatidylcholine at concentrations from 10(-6) M to 10(-4) M did not contract aortic strips. However, lysophosphatidylcholine strongly potentiated the UK14,304-induced contraction. High K+ - and PMA-induced contractions were also potentiated. In contrast, the noradrenaline-induced contraction was only slightly potentiated by 10(-5) M lysophosphatidylcholine. In fura PE-3-loaded aortic strips, lysophosphatidylcholine (10(-5) M) markedly augmented the increase in both cytosolic free Ca2+ ([Ca2+]i) and contractile tension induced by UK14,304, high K+ and PMA. Nicardipine (10(-7) M) and 10(-6) M Ro-31-8220 (?1-[3-(amidinothio)propyl-1H-indoyl-3-yl]-3-(1-methyl-1H-++ +indoyl-3-yl)-maleimide-methane sulfate) strongly inhibited the increase in [Ca2+]i and contractile tension induced by UK14,304 and in the presence of these inhibitors, the enhancing effects of lysophosphatidylcholine were attenuated. However, the enhancing effect on high K+ -induced contraction was not affected by Ro-31-8220. These results suggest that lysophosphatidylcholine may cause an augmentation of the increase in [Ca2+]i induced by UK14,304 which response is depend on protein kinase C activation and in this way potentiate contractile responses in the rat aorta. Protein kinase C independent mechanisms may also be involved in the enhancing effect of lysophosphatidylcholine on smooth muscle contraction.  相似文献   

19.
Cationic current (Icat) and inhibition of the voltage-dependent Ca2+ current (ICa) evoked by muscarinic receptor activation with carbachol were studied using whole-cell patch clamp technique in smooth muscle cells isolated from longitudinal muscle of guinea pig small intestine. With low buffering of [Ca2+]i (0.1 mM BAPTA [1,2-bis-(2-aminophenoxy)-ethane-N,N, N', N'-tetraacetic acid] in pipette solution) Icat and ICa inhibitory responses had a rapid onset to an initial peak followed by a sustained phase. The sustained phase of ICa suppression was bigger than in the case when [Ca2+]i was clamped to 100 nM, but decreased with repeated stimulation. Upon repeated stimulation with 50 microM carbachol in cells where [Ca2+]i was clamped to 100 nM and when GTP was absent, Icat amplitude decreased strongly and more substantially compared to ICa inhibition, but both responses declined only slightly when 1 mM GTP was present in the pipette solution. GDP-betaS (1 or 5 mM) in pipette solution or pre-treatment of cells with pertussis toxin (6 microg/ml, for 4 h or longer) blocked Icat more than ICa suppression by carbachol, whereas L-NAME (N-omega-nitro-L-arginine methyl ester hydrochloride) (100 microM in pipette solution) affected neither of them significantly. We conclude that the cationic current and the suppression of the voltage-dependent Ca2+ current evoked by muscarinic receptor activation are mediated by pertussis toxin-sensitive G-protein(s) but the latter response was less sensitive to blockade by GDP-betaS and to GTP deficiency in the cell.  相似文献   

20.
Force development in skeletal muscle is driven by an increase in myoplasmic free [Ca2+]i ([Ca2+]i) due to Ca2+ release from the sarcoplasmic reticulum (SR). The magnitude of [Ca2+]i elevation during stimulation depends on: (a) the rate of Ca2+ release from the SR; (b) the rate of Ca2+ uptake by the SR; and (c) the myoplasmic Ca2+ buffering. We have used fluorescent Ca2+ indicators to measure [Ca2+]i in intact, single fibres from mouse and Xenopus muscles under conditions where one or more of the above factors are changed. The following interventions resulted in increased tetanic [Ca2+]i: beta-adrenergic stimulation, which potentiates the SR Ca2+ release; application of 2.5-di(tert-butyl)-1,4-benzohydroquinone, which inhibits SR Ca2+ pumps; application of caffeine, which facilitates SR Ca2+ release and inhibits SR Ca2+ uptake; early fatigue, where the rate of SR Ca2+ uptake is reduced; acidosis, which reduces both the myoplasmic Ca2+ buffering and the rate of SR Ca2+ uptake. Reduced tetanic [Ca2+]i was observed in late fatigue, due to reduced SR Ca2+ release, and in alkalosis, due to increased myoplasmic Ca2+ buffering. Force is monotonically related to [Ca2+]i but depends also on the myofibrillar Ca2+ sensitivity and the maximum force cross-bridges can produce. This is clearly illustrated by changes of intracellular pH where, despite a lower tetanic [Ca2+]i, tetanic force is higher in alkalosis than acidosis due to increases of myofibrillar Ca2+ sensitivity and maximum cross-bridge force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号