首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variation of the kinetics of the martensite transformation with carbon content and martensite habit plane has been investigated in several Fe−Ni based alloys. Transformation in an Fe-25 wt pct Ni-0.02 wt pct C alloy exhibits predominantly athermal features, but some apparently isothermal transformation also occurs. In a decarburized alloy, on the other hand, the observed kinetic features, such as the dependence ofM s on cooling rate, were characteristic of an isothermal transformation. In contrast, Fe-29.6 wt pct Ni-10.7 wt pct Co alloys with carbon contents of 0.009 wt pct C and 0.003 wt pct C transform by burst kinetics to {259}γ plate. At both these carbon levels, theM b temperatures of the Fe−Ni−Co alloys are independent of cooling rate. It is proposed that the change in kinetic behavior of the Fe-25 pct Ni alloy with the different carbon contents is due to the occurrence of dynamic thermal stabilization in the higher carbon alloy. Dynamic thermal stabilization is relatively unimportant in the Fe−Ni−Co alloys which transform by burst kinetics to {259}γ plate martensite. P. J. FISHER, formerly with the University of New South Wales D. J. H. CORDEROY, formerly with the University of New South Wales  相似文献   

2.
The thermal cycling of an Fe-17 wt pct Mn alloy between 303 and 573 K was performed to investigate the effects of thermal cycling on the kinetics of the γε martensitic transformation in detail and to explain the previous, contrasting results of the change in the amount of ε martensite at room temperature with thermal cycling. It was observed that the shape of the γε martensitic transformation curve (volume fraction vs temperature) changed gradually from a C to an S curve with an increasing number of thermal cycles. The amount of ε martensite of an Fe-17 wt pct Mn alloy at room temperature increased with thermal cycling, in spite of the decrease in the martensitic start (M s) temperature. This is due to the increase in transformation kinetics of ε martensite at numerous nucleation sites introduced in the austenite during thermal cycling.  相似文献   

3.
Martensitic transformations induced by plastic deformation are studied comparatively in various alloys of three types: Fe-30 pct Ni, Fe-20 pct Ni-7 pct Cr, and Fe-16 pet Cr-13 pct Ni, with carbon content up to 0.3 pct. For all these alloys the tensile properties vary rapidly with temperature, but there are large differences in the value of the temperature rangeM s toM d, which strongly increases with substitution of chromium for nickel or with carbon addition. Using the node method, it is found that the intrinsic stacking fault energy in the austenite drastically increases with temperature in all the chromium-bearing alloys investigated. This variation is consistent with the observed influence of temperature on the appearance of twinning or ε martensite during plastic deformation. Very different α’ martensite morphologies can result from spontaneous and plastic deformation induced transformations, especially in Fe-20 pct Ni-7 pct Cr-type alloys where platelike and lath martensites are respectively observed. As in the case of ε martensite, the nucleation process is analyzed as a deformation mode of the material, using a dislocation model. It is then possible to account for the morphology of plastic deformation induced α’ martensite in both Fe-20 pct Ni-7 pct Cr and Fe-16 pct Cr-13 pct Ni types alloys and for the largeM s toM d range in these alloys. This paper is based upon a thesis submitted by F. LECROISEY in partial fulfillment of the degree of Doctor of Philosophy at the University of Nancy.  相似文献   

4.
5.
Data on the temperature and composition dependence of the magnetic moment and Curie temperature of several Fe-Ni-Co and Fe-Ni-Mn alloys have been obtained. The temperature dependence of the magnetization was obtained for each alloy from 298 to 873 K, following the magnetization change through the transformation from martensite to austenite. The effect of cobalt and manganese additions to an Fe-29.9 at. pct Ni alloy on the reverse transition temperature,A s , the Curie temperature,T c , and the saturation magnetization at absolute zero, ρso, has been determined, Values forA s , T c , and ρso were obtained by fitting a Brillouin function to the respective contributions of austenite and martensite to the total magnetization. This technique represents a very sensitive method of obtaining transition temperatures and the respective amounts of each phase present in the alloys. A theoretical prediction of ρso andT c was in agreement with the experimentally determined values.  相似文献   

6.
The effects of carbon content and ausaging on austenite γ ↔ martensite (α′) transformation behavior and reverse-transformed structure were investigated in Fe-32Ni-12Co-4Al and Fe-(26,28)Ni-12Co-4Al-0.4C (wt pct) alloys. TheM s temperature, the hardness of γ phase, and the tetragonality of α′ increase with increasing ausaging time, and these values are higher in the carbon-bearing alloys in most cases. The γ → α′ transformation behavior is similar to that of thermoelastic martensite; that is, the width of α′ plate increases with decreasing temperature in all alloys. The αt’ → γ reverse transformation temperature is lower in the carbon-bearing alloys, which means that the shape memory effect is improved by the addition of carbon. The maximum shape recovery of 84 pct is obtained in Fe-28Ni-12Co-4Al-0.4C alloy when the ausaged specimen is deformed at theM s temperature and heated to 1120 K. There are two types of reverse-transformed austenites in the carbon-bearing alloy. One type is the reversed y containing many dislocations which were formed when the γ/α′ interface moved reversibly. The plane on which dislocations lie is (01 l)γ if the twin plane is (112)α′. The other type of reverse-transformed austenite exhibits γ islands nucleated within the α′ plates.  相似文献   

7.
Isothermal transformation from austenite in an Fe-9.14 pct Ni alloy has been studied by optical metallography and examination by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the temperature range 565 °C and 545 °C, massive ferrite (α q ) forms first at prior austenite grain boundaries, followed by Widmanst?tten ferrite (α W ) growing from this grain boundary ferrite. Between 495 °C and 535 °C, Widmanst?tten ferrite is thought to grow directly from the austenite grain boundaries. Both these transformations do not go to completion and reasons for this are discussed. These composition invariant transformations occur below T 0 in the two-phase field (α+γ). Previous work on the same alloy showed that transformation occurred to α q > and α W on furnace cooling, while analytical TEM showed an increase of Ni at the massive ferrite grain boundaries, indicating local partitioning of Ni at the transformation interface. An Fe-3.47 pct Ni alloy transformed to equiaxed ferrite at 707 °C ±5 °C inside the single-phase field on air cooling. This is in agreement with data from other sources, although equiaxed ferrite in Fe-C alloys forms in the two-phase region. The application of theories of growth of two types of massive transformation by Hillert and his colleagues are discussed. This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.  相似文献   

8.
A gold alloy with 18 wt pct Cu and 6 wt pct Al undergoes a reversible displacive phase transformation between an incompletely ordered L21 parent phase and a tetragonal product. The characteristics of these transformations were studied using acoustic emission, dilatometry, X-ray diffraction, and metallography. The morphology of the transformation products, the structure of the parent phase, and the generation of significant acoustic emission during the transformations indicate that they are at least quasi-martensitic, if not martensitic, and that this system is an example of a β-phase shape-memory alloy (SMA). The onset temperatures of the transformations depend on the prior thermal history of the sample. The martensite start (M s ) temperature is between 30 °C and 20 °C. The system exhibits hysteresis and will revert to the parent phase when reheated, with an austenite start (A s ) temperature between 55 °C and 80 °C. However, freshly cast or solution-annealed and quenched samples of the alloy do not transform to the tetragonal phase. Aging of such material at temperatures between 30 °C and 200 °C is required before they will manifest the displacive transformation. The “martensite” phase is considerably more resistant to aging-induced stabilization than that of most other SMAs.  相似文献   

9.
Microstructural changes and phase transformations of eutectoid Zn-Al-based alloy ZnA120.2Cul.8 (wt pct) were studied under tensile stress by using X-ray diffraction and scanning electron microscopy (SEM) techniques. It was found that the lamellar microstructure of the heat-treated eutectoid Zn-Albased alloy changed partially into a spheroidized structure at the rupture part of the specimen after tensile testing, while the lamellar structure at the bulk part of the specimen remained stable in the original state. The X-ray diffraction identification results showed that two phase transformations,i.e., decomposition of metastable phase η′T and a four-phase transformation, α+ ε → T + η, occurred during tensile testing. It was concluded that the tensile stress affected not only microstructural change but also phase transformation of the alloy. The SEM observation on the etched specimen showed clearly the morphology of the microstructural change.  相似文献   

10.
11.
A nanostructured surface layer was formed in Fe-30 wt pct Ni alloy by surface mechanical attrition treatment (SMAT). The microstructure of the surface layer after SMAT was investigated using optical microscopy, X-ray diffraction, and transmission electron microscopy. The analysis shows that the nanocrystallization process at the surface layer starts from dislocation tangles, dislocation cells, and subgrains to highly misoriented grains in both original austenite and martensite phases induced by strain from SMAT. The magnetic properties were measured for SMAT Fe-30 wt pct Ni alloy. The saturation magnetization (M s ) and coercivity (H c ) of the nanostructured surface layers increase significantly compared to the coarse grains sample prior to SMAT. The increase of M s for SMAT Fe-30 wt pct Ni alloy was attributed to the change of lattice structure resulting from strain-induced martensitic transformation. Meanwhile, H c was further increased from residual microstress and superfined grains. These were verified by experiments on SMAT pure Ni and Co metal as well as liquid nitrogen-quenched Fe-30 wt pct Ni alloy.  相似文献   

12.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

13.
14.
In a recent contribution,[1] Zhu and Orozco presented a phase transformation of the ternary alloy Zn-20.2 wt pct Al-1.8 wt pct Cu, studied under tensile stress by using X-ray diffraction and scanning electron microscopy techniques. The authors report the existence of three phases in the alloy at room temperature after furnace cooling,α,ε, and a newη T instead of the zinc-rich solid solutionη, as appears in the phase diagrams. The reported parameters for this hcp metastable phase are[1,2] a = 0.2663 andc = 0.4873 nm; these values are close to the parameters of pure zinc,[3] witha = 0.2664 nm andc = 0.4946 nm. The difference betweenη T and zinc in thea parameter is around 0.03 pct, and it is 1.47 pet for thec parameter. When zinc is saturated with aluminum in the Zn-AI alloys, thea parameter shrinks[3] to 0.2660 nm. It is possible to see that the value ofa of theη T phase lies in-between the values of pure zinc and zinc-aluminum solid solution. The solubility of Al and Cu in Zn[4] at 100 °C is 0.3 wt pct Cu and 0.06 wt pct Al. The covalent radius of Cu (0.117 nm) is smaller than the covalent radius of Al (0.118 nm) and Zn (0.125 nm), so the introduction of Cu in the zinc structure can result in a reduction of thec parameter. These values suggest that the metastable phaseη T could be the hcp zincrich solid solution with low aluminum and copper contents. The article of Zhu and Goodwin,[5] cited by Zhu and Orozco in their Reference 14, is related not to the eutectoid alloy, as they argue, but to an alloy with 27 wt pct Al, and no reports about the transformation ofε intoT′ were found. The presence of the metastable e phase (CuZn4, sometimes called CuZn5) at room temperature and its transformation to the stable phaseT′ (rhombohedral intermetallic phase, Al4Cu3Zn) have been observed by other authors.[6,7] Y.H. ZHU and E. OROZCO:Metall Mater. Trans. A, 1995, vol. 26A, pp. 2611-15.  相似文献   

15.
The effect of various silicon levels on the reaction between iron panels and Al-Zn-Si liquid baths during hot dipping at 610°C was studied. Five different baths were used: 55Al−0.7Si−Zn, 55Al−1.7Si−Zn, 55Al−3.0Si−Zn, 55Al−5.0Si−Zn, and 55Al−6.88Si−Zn (in wt pct). The phases which formed as a result of this reaction were identified as Fe2Al5 and FeAl3 (binary Fe−Al phases with less than 2 wt pct Si and Zn in solution),T1, T2, T4, T8, andT 5H (ternary Fe−Al−Si phases), andT 5C (a quaternary Fe−Al−Si−Zn phase). Compositional variations through the reaction zone were determined. The phase sequence in the reaction zone of the panel dipped for 3600 seconds in the 1.7 wt pct Si bath was iron panel/(Fe2Al5+T 1)/FeAl3/(T 5H+T 5C)/overlay. In the panel dipped for 1800 seconds in the 3.0 wt pct Si bath the reaction zone consisted of iron panel/Fe2Al5/(Fe2Al5+T 1)/T 1/FeAl3/(FeAl3+T 2)/T 5H/overlay. In the panel dipped for 3600 seconds in the 6.88 wt pct Si bath the phase sequence was iron panel/Fe2Al5/(Fe2Al5+T1)/(T1+FeAl3)/(T1+T2)/T2/T8/T4/overlay. The growth kinetics of the reaction zone were also studied. A minimum growth rate for the reaction zone which formed from a reaction between the iron panel and molten Al−Zn−Si bath was found in the 3.0 wt pct Si bath. The growth kinetics of the reaction layers were found to be diffusion controlled in the 0.7, 1.7, and 6.88 wt pct Si baths, and interface controlled in the 3.0 and 5.0 wt pct Si baths. The presence of the interface between theT2/T5H, Fe2Al5/T 1, orT 1/FeAl3 phases is believed responsible for the interface controlled growth kinetics exhibited in the 3.0 and 5.0 wt pct Si baths.  相似文献   

16.
The ball milling of elemental powders corresponding to Γ (Fe3Zn10)+0.12 wt pct Si; Γ1 (Fe5Zn21) + 0.12 wt pct Si; δ (FeZn7)+0.12 wt pct Si; and ζ (FeZn13)+0.12 wt pct Si composition ratios yields crystalline, mechanically alloyed phases. Differential scanning calorimetry (DSC) measurements of these materials show that they evolve differently, with well-defined characteristic stages. The activation energies for processes corresponding to these stages, based on kinetic analyses, are determined and correlated to microstructural evolvements. The processes occurring during the first stage below 250 °C, for all of the materials studied using X-ray diffraction (XRD) analysis, are associated with release of strain, recovery, and limited atomic diffusion. The activation energies for recovery processes are 120 kJ/mole for the Γ+0.12 wt pct Si, 131 kJ/mole for δ+0.12 wt pct Si, and 96 kJ/mole for ζ+0.12 wt pct Si alloys. At higher temperatures, recrystallization and other structural transformations occur with activation energies of 130 and 278 kJ/mole for Γ+0.12 wt % Si; of 161 kJ/mole for Γ1+0.12 wt pct Si; of 167 and 244 kJ/mole for δ+0.12 wt pct Si; and of 641 kJ/mole for the ζ+0.12 wt pct Si. In addition, a eutectic reaction at 420 °C±3 °C, corresponding to the Zn-Si system, and a melting of Zn in Fe-Zn systems are observed for the ζ+0.12 wt pct Si material. The relation of FeSi formation in the Sandelin process is discussed.  相似文献   

17.
18.
The martensite ⇌ austenite transformations were investigated in Fe-Ni-Co alloys containing about 65 wt pct Fe and up to 15 wt pct Co. A change in morphology of martensite from plate-like to lath-type occurred with increasing cobalt content; this change in morphology correlates with the disappearance of the Invar anomaly in the austenite. The martensite-to-austenite reverse transformation differed depending on martensite morphology. Reversion of plate-like martensite was found to occur by simple disintegration of the martensite platelets. Reverse austenite formed from lath-type martensite was not retained when quenched from much aboveA s, with microcracks forming during theM→γ→M transformation.  相似文献   

19.
Both Ni-36 wt pct Sb and Ni-52.8 wt pct Sb eutectic alloys were highly undercooled and rapidly solidified with the glass-fluxing method and drop-tube technique. Bulk samples of Ni-36 pct Sb and Ni-52.8 pct Sb eutectic alloys were undercooled by up to 225 K (0.16 T E ) and 218 K (0.16 T E ), respectively, with the glass-fluxing method. A transition from lamellar eutectic to anomalous eutectic was revealed beyond a critical undercooling ΔT 1*, which was complete at an undercooling of ΔT 2*. For Ni-36 pct Sb, ΔT 1*≈60 K and ΔT 2*≈218 K; for Ni-52.8 pct Sb, ΔT 1*≈40 K and ΔT 2*≈139 K. Under a drop-tube containerless solidification condition, the eutectic microstructures of these two eutectic alloys also exhibit such a “lamellar eutectic-anomalous eutectic” morphology transition. Meanwhile, a kind of spherical anomalous eutectic grain was found in a Ni-36 pct Sb eutectic alloy processed by the drop-tube technique, which was ascribed to the good spatial symmetry of the temperature field and concentration field caused by a reduced gravity condition during free fall. During the rapid solidification of a Ni-52.8 pct Sb eutectic alloy, surface nucleation dominates the nucleation event, even when the undercooling is relatively large. Theoretical calculations on the basis of the current eutectic growth and dendritic growth models reveal that γ-Ni5Sb2 dendritic growth displaces eutectic growth at large undercoolings in these two eutectic alloys. The tendency of independent nucleation of the two eutectic phases and their cooperative dendrite growth are responsible for the lamellar eutectic-anomalous eutectic microstructural transition.  相似文献   

20.
A Cahn Electrobalance has been used to determine directly and very accurately the carbon content of iron, iron-0.48 wt pct molybdenum and iron-1.16 wt pct molybdenum specimens which were equilibrated with a series of methane-hydrogen gas mixtures of constant composition. The equilibria investigated involved the austenite phases of the alloys at 783, 813 and 848‡C. The experimental results permit direct calculation of the activities of carbon in the samples, relative to graphite as unity, and of the enthalpy and entropy of solution of carbon. The results are compared with the experimental measurements of a number of other investigators. The results are in excellent agreement with those of Smith and Schenck and Kaiser for the Fe-C system at 800‡C, and indicate -H C /M values of 9700 ± 500 cal/mole for pure Fe, 10,030 ± 500 cal/mole for an Fe-0.48 wt pct Mo alloy, and 10,150 ± 500 cal/mole for an Fe-1.16 wt pct Mo alloy. The effect of molybdenum in austenite is to decrease the activity coefficient of carbon in austenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号