首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The formation and growth of thermal fatigue crack in low chromium semi steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide‘s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack‘s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.  相似文献   

2.
The reticulate unsmoothed surfaces on HD die steel, which imitate the surface of soil-burrowing animals (such as the dung beetle, earthworm, pangolin, and ant) are produced with various laser parameters. The characteristics (including width, depth, area ratio, and volume), microstructure, and hardness of the unsmoothed units are studied. At the same time, the wear resistance of the material with an unsmoothed surface is measured. The results show that the width and volume of the unit increase, the microstructure becomes coarser, the hardness decreases, and the wear resistance improves with the increase of the current intensity and pulse duration within a certain range. However, there is little difference between the extent to which the wear resistance of the material increases and the unsmoothed surface, when the current intensity and pulse duration increase to some extent. The wear resistance of the unsmoothed material under 300 A or 20 ms is better in the experiments. The improving extent of the wear resistance lies in a combination of the characteristics, microstructure, and hardness of the unsmoothed unit. An unsmoothed material with better properties can be processed if the laser parameters are well matched.  相似文献   

3.
Thermal wear of cast hot-forging die steel modified by rare earths(RE) was studied and compared with commercially used die steels. The function of RE and the mechanism of thermal wear of cast steel modified by RE were discussed. The results showed that with increasing content of RE, the wear rate of cast steel reduced at first and then increased. By adding 0.05% (mass fraction) RE, the cast hot-forging die steel with optimum thermal wear resistance was obtained, which was better than that of H13 and 3Cr2WSV. The large amount of coarse inclusions, (RE)2O2S, resulted from excessive RE, which obviously deteriorated thermal wear resistance. The mechanism of thermal wear of the modified cast die steel is oxidation wear and oxide fatigue delamination. The wear debris are lumps of Fe2O3 and Fe3O4.  相似文献   

4.
The effects of RE modification on structure and the properties of a new cast hot-work die (CHD) steel were investigated. The grains of the CHD steel are refined by RE modification. With the increase of RE addition, both grain size and inclusion amount are reduced. Appropriate amount of RE results in decrease in inclusion amount and formation of spheroidal inclusions uniformly - distributed in steel, so that the morphology and distribution of inclusions are improved. RE composite modification favors the formation of bainite, austenite and fine lath martensite with dense dislocation. When the residual RE content reaches 0.02 %, no obvious changes in strength and hardness are found, while fracture toughness and threshold of fatigue crack growth are increased. The impact toughness, elongation and reduction of cross sectional area are increased by a factor of two, and thermal fatigue resistance is also improved.  相似文献   

5.
The effect of rare earth elements on eutectic carbide‘s morphology of low chromium semi-steel in as-cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide‘s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950℃ for 3h.  相似文献   

6.
A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15%) is not high sometimes, but its cost is not low. Thus, medium Cr-Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball-on-ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr-Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr-Si cast iron is released in the as-cast state; (2) the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content im- proves the morphology of eutectic carbide; (5) there is no seeondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear.  相似文献   

7.
Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 μs, intensity 15 or 70 kW/cm2, and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.  相似文献   

8.
New Method for Evaluating Thermal Wear of Rolls in Rolling Process   总被引:1,自引:0,他引:1  
A new method was developed by a thermal wear machine to evaluate the thermal wear of roils in steel rolling process. The steel strip and rolls were simulated by upper and lower heating disks. The upper heating disk could he kept at a temperature of over 900 ℃ by induction heating. The pressure between the disks as high as 323.2 MPa could be achieved and the slipping rate could be 12. 7 %. The thermal wear of high speed steel (HSS) roll material, the wear rate of the HSS roll, and the SEM morphology of a worn HSS roll surface were investigated. This method was useful and could be employed to simulate friction and wear between strip and roll during the strip rolling process.  相似文献   

9.
The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.  相似文献   

10.
High temperature low cycle fatigue tests on GH4742 superalloy were studied under the total strain-controlled conditions at 650℃.Combined with fatigue test data,fatigue properties of the alloy were analyzed.Fracture morphology and dislocation structure were observed by scanning electron microscopy and transmission electron microscopy.The results showed that fatigue life and fatigue resistance of GH4742 alloy decreased significantly with increasing total strain amplitude.The cyclic hardening,cyclic softening and cyclic stability phenomena of the alloy occurred during the low cycle fatigue process.The increasing total strain amplitude is conducive to the formation ofγ′phase.Fatigue crack propagation is controlled jointly by ductile and brittle fracture.Inhomogeneous deformation and deformation restricted in slip bands are the main reasons for the reduction of fatigue life of GH4742 alloy.  相似文献   

11.
Chromium wear resistant cast iron is widelyusedin engineering, mining and power industry forits high strength,hardness and wear resistance .Inproduction process , some wear-resistant parts ser-ving in alternative stress due to rapid heating andcooling rate ofteninduces thermal fatigue andresultsinfailure .The badthermal fatigue property of chro-mium wear resistant cast iron is due to eutectic car-bides which distribute as continuous net in matrix.Recent researches showthat hot deformation can …  相似文献   

12.
The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.  相似文献   

13.
对不同钒含量的拉延模具用半固态含钒灰铸铁试样进行了耐磨损性能和热疲劳性能的测试与分析。结果表明:随钒含量从0增加至1.25%,试样的磨损体积先减小后基本不变,热疲劳试验后主裂纹平均深度先减小后增大、平均宽度先减小后基本不变。拉延模具用半固态含钒灰铸铁的钒含量优选为1%。与不添加钒试样相比,钒含量为1%时试样的磨损体积减小72%,热疲劳试验后主裂纹平均深度和宽度分别减小了68%和79%。  相似文献   

14.
摘要:为提高焊接构件的动载疲劳寿命,以热模拟为试验手段,对Q700D高强钢进行了焊接热模拟,研究了粗晶热影响区的疲劳寿命、小裂纹扩展行为以及组织软化特征。利用Paris方程和轴向拉伸疲劳试验数据,建立了ΔKth值与模拟粗晶区疲劳寿命的对应关系,利用ΔKth值实现了快速预估粗晶区疲劳寿命。研究表明:相同应力幅值下的lgN值与ΔKth值存在一定的线性拟合关系,即ΔKth值越大,则疲劳寿命N越长。小裂纹扩展微观机理在于所形成的大角度晶界(不小于15°)对小裂纹尖端的止裂性较强,可迫使小裂纹尖端转向耗能。CGHAZ的软化与第二相粒子回熔与粗化有关,粗化的第二相粒子易萌生小裂纹,可通过提高大角度晶界抑制裂纹扩展。  相似文献   

15.
The fatigue crack initiation and propagation behavior of a niobium bearing HSLA steel heat treated to give two tempered martensitic microstructures presumably with and without fine niobium carbides has been studied by light microscopy, electron microscopy, and strain gage measurements of plastic zone deformation. The high cycle, stress controlled fatigue life of the steel in both heat treated conditions was quite similar with the steel presumably containing the fine niobium carbides having slightly better resistance at low stress amplitudes. This slightly better high cycle resistance is associated with better resistance to fatigue crack initiation for this heat treatment. The fatigue crack propagation behavior of the steel was the opposite. The steel presumably containing the fine niobium carbides exhibited a much faster fatigue crack growth rate than that without them. The difference in growth rates is explained in terms of the plastic work expended during the propagation of the fatigue crack.  相似文献   

16.
狄舍尔轧管机限动芯棒选材与应用研究   总被引:1,自引:0,他引:1  
鞍钢无缝钢管厂狄舍尔轧管机的限动芯棒消耗量大,主要的失效形式为热磨损与热疲劳,具体表现为磨损和网裂,为改善芯棒的抗热损伤性能,根据理论计算及实际工况、重新选择芯棒钢材质,经模拟和工业性试验表明,试验钢的耐热疲劳性比原材质42CrMo钢高3倍左右,芯棒一次性单耗由3.3kg/t降至1kg/t以下。  相似文献   

17.
This study investigates the thermal fatigue cracking behavior of high-silicon spheroidal graphite (SG) cast iron. Irons with different residual magnesium contents ranging from 0.038 to 0.066 wt pct are obtained by controlling the amount of spheroidizer. The repeated heating/cooling test is performed under cyclic heating in various temperatures ranging from 650 °C to 800 °C. Experimental results indicate that the thermal fatigue cracking resistance of high-silicon SG cast iron decreases with increasing residual magnesium content. The shortest period for crack initiation and the largest crack propagation rate of the specimens containing 0.054 and 0.060 wt pct residual magnesium contents are associated with heating temperatures of 700 °C and 750 °C. Heating temperatures outside this range can enhance the resistance to thermal fatigue crack initiation and propagation. When thermal fatigue cracking occurs, the cracks always initiate at the surface of the specimen. The major path of crack propagation is generally along the eutectic cell-wall region among the ferrite grain boundaries, which is the location of MgO inclusions agglomerating together. On the other hand, dynamic recrystallization of ferrite grains occurs when the thermal cycle exceeds a certain number after testing at 800 °C. Besides, dynamic recrystallization of the ferrite matrix suppresses the initiation and propagation of thermal fatigue cracking.  相似文献   

18.
The effect of slip distribution on the fatigue crack propagation behavior in vacuum of a high purity Al-5.9Zn-2.6Mg-l.7Cu alloy in various age-hardened conditions has been investigated. The crack propagation resistance was observed to be significantly higher for underaged microstructures containing shearable precipitates in comparison to overaged conditions with nonshearable precipitates. The improved crack propagation resistance is attributed in part to an increased amount of reversed slip in the plastic zone at the crack tip due to a higher degree of planar slip for conditions with shearable precipitates. The observed increase in fatigue crack propagation resistance with decreasing precipitate size for microstructures containing a constant volume fraction of shearable precipitates cannot be explained on the basis of such slip reversibility alone. The variation in ductility for the different microstructures has also to be taken into account. It was found that the enhanced crack propagation resistance can be correlated to the increased ductility with decreasing precipitate size. This explanation was supported by the experimental observation that microstructures containing different volume fractions and sizes of shearable precipitates but exhibiting the same ductility showed approximately the same resistance against fatigue crack propagation. formerly with German Aerospace Research Establishment (DFVLR), Cologne, Germany. formerly with Ruhr-University, Bochum, Germany.  相似文献   

19.
Fatigue tests were performed on specimens containing weld heat affected zones at two orientations to the stress axis. Two heat affected zones were studied, one in Ducol W30 (a low alloy steel) and the other in mild steel. Under conditions of constant alternating and maximum stress intensity a fatigue crack only propagated at a uniform rate when it was remote from the heat affected zone. A heat affected zone which was harder than either the parent plate or weld metal was found to reduce crack propagation rates by a factor of up to 2 by restricting the plastic zone size around the crack tip. The changes in crack propagation rate could not be related uniquely to the conditions of the material immediately adjacent to the crack tip. Furthermore, the shape of the plastic zone was found to influence the direction of the propagation of a fatigue crack which always deviated toward regions of lower flow stress. A crack was never found to follow the interface between the weld metal and the parent metal heat affected zone because the flow stresses were not the same on either side of the interface. There was no difference in crack propagation mechanism between the parent plate and its heat affected zone for the stress conditions imposed. Formerly with Central Electricity Research Laboratories, Materials Division, Leatherhead, Surrey, England  相似文献   

20.
Unnotched SiC (SCS-6) fiber-reinforced Ti-15-3 alloy composite is subjected to a tension-tension fatigue test in a vacuum of 2×10−3 Pa at 293 and 823 K with a frequency of 2 Hz and R=0.1. Direct observation of the damage evolution process during the test is carried out by scanning electron microscopy (SEM). Test temperature dependent and independent fatigue damage behaviors are observed. The early stage fiber fractures observed at the polished surface are not influenced by the test temperature; however, matrix crack initiation and propagation behaviors differ greatly with temperature. The evolution of interface wear damage also differs with temperature, becoming more severe at 823 K, and the interface wear damage zone increases with the increase of the number of fatigue cycles. The macroscopic fatigue damage appears as a modulus reduction associated with interface sliding, matrix crack propagation, and plastic deformation of the matrix. The deformation zone of the composite tested at 823 K spreads more than that at 293 K. The fatigue life of the composite tested at 823 K is longer than that at 293 K. This behavior is related to the difference in spread of the damage zone in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号