首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An investigation of phase transformations in hydrogen-charged metastable austenitic stainless steels was carried out. Solution-annealed, high-purity, ultralow-carbon Fel8Crl2Ni (305) and laboratory-heat Fel8Cr9Ni (304) stainless steels were examined. The steels were cathodically charged with hydrogen at 1, 10, and 100 mA/cm2, at room temperature for 5 minutes to 32 hours, in an lN H2SO4 solution with 0.25 g/L of NaAsO2 added as a hydrogen recombination poison. Changes in microstructure and hydrogen damage that resulted from charging and subsequent room-temperature aging were studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Hydrides from hydrogen charging (hep ε* in 305 SS and fcc γ* and hcp ε* in 304 SS) were observed. The evidence suggests the following mechanisms for hydride formation during charging: (1)γ → ε → ε* hydride and (2) γ → γ* hydride. These hydrides were found to be unstable and decomposed during room-temperature aging in air by the following suggested mechanisms: (1)ε* hydride (hcp) → expanded ε (hcp) phase →α′ (bcc) phase and (2) γ* hydride →γ phase. The transformation from ε* toα′, however, was incomplete, and a substantial fraction of ε was retained. A kinetics model for hydride decomposition and the accompanying phase transformation during aging is proposed.  相似文献   

2.
The effect of hydrogen and stress (strain) on the stability of the austenite phase in stainless steels was investigated. Hydrogen was introduced by severe cathodic charging and by elevated temperature equilibration with high pressure H2 gas. Using X-ray diffraction and magnetic techniques, the behavior of two “stable” type AISI310 steels and an “unstable” type AISI304 steel was studied during charging and during the outgassing period following charging. Transformation from the fcc γ phase to an expanded fcc phase, γ*, and to the hcp ε phase occurred during cathodic charging. Reversion of the γ* and e phases to the original γ structure and formation of the bcc α structure were examined, and the kinetics of these processes was studied. The γ* phase was shown to be ferromagnetic with a subambient Curie temperature. The γ⇆ε phase transition was studied after hydrogen charging in high pressure gas, as was the formation of a during outgassing. These results are interpreted as effects of hydrogen and stress (strain) on the stability of the various phases. A proposed psuedo-binary phase diagram for the metal-hydrogen system was proposed to account for the formation of the γ* phase. The relation of these phase changes to hydrogen embrittlement and stress corrosion cracking of stainless steel is discussed.  相似文献   

3.
To study the influence of hydrogen on the fatigue strength of AISI type 304 metastable austenitic stainless steel, specimens were cathodically charged with hydrogen. Using tension-compression fatigue tests, the behavior of fatigue crack growth from a small drill hole in the hydrogen-charged specimen was compared with that of noncharged specimen. Hydrogen charging led to a marked increase in the crack growth rate. Typical characteristics of hydrogen effect were observed in the slip band morphology and fatigue striation. To elucidate the behavior of hydrogen diffusion microscopically in the fatigue process, the hydrogen emission from the specimens was visualized using the hydrogen microprint technique (HMT). In the hydrogen-charged specimen, hydrogen emissions were mainly observed in the vicinity of the fatigue crack. Comparison between the HMT image and the etched microstructure image revealed that the slip bands worked as a pathway for hydrogen to move preferentially. Hydrogen-charging resulted in a significant change in the phase transformation behavior in the fatigue process. In the noncharged specimen, a massive type α′ martensite was observed in the vicinity of the fatigue crack. On the other hand, in the hydrogen-charged specimen, large amounts of ε martensite and a smaller amount of α′ martensite were observed along the slip bands. The results indicated that solute hydrogen facilitated the ε martensitic transformation in the fatigue process. Comparison between the results of HMT and EBSD inferred that martensitic transformations as well as plastic deformation itself can enhance the mobility of hydrogen.  相似文献   

4.
The effects of cathodic hydrogen charging and subsequent aging on phase transitions and microstructures of rapidly solidified (RS) austenitic stainless steels (types 310 RS, 316 RS, and 316TiM RS) were investigated. The behavior of the martensitic phases,α′(bcc) andε(hcp), as well as the austenite phase,γ (fcc), of the RS steels during aging after charging was compared to the behavior of these phases of equivalent conventionally processed commercial solution-treated (ST) austenitic stainless steels (types 310 ST, 316L ST, and 316TiM ST) following identical cathodic-charging conditions by means of X-ray and electron diffraction techniques. The behavior of theα′ phase of both RS and ST steels (that formα′ phase) during aging was found to be very similar, while the behavior of bothγ andε phases during aging of all of the RS steels studied, as compared to the equivalent ST steels, was different. The development of lower internal stresses and minor lattice expansion of the RS steels, as compared to the ST steels, is probably due to a different distribution of hydrogen within the near-surface layer of the RS steels than that of the ST steels, which appears to be related to the markedly different microstructural characterizations of the RS steels from the ST steels. Scanning and transmission electron microscopy (SEM and TEM) observations indicated that the tendency toward cracking along the columnar-like structure is typical of all of the charged RS steels studied. Formerly Research Associate, Department of Materials Engineering, Ben Gurion University of the Negev  相似文献   

5.
The effects of cathodic hydrogen charging and subsequent aging on phase transitions and microstructures of rapidly solidified (RS) austenitic stainless steels (types 310 RS, 316 RS, and 316TiM RS) were investigated. The behavior of the martensitic phases,α′(bcc) andε(hcp), as well as the austenite phase,γ (fcc), of the RS steels during aging after charging was compared to the behavior of these phases of equivalent conventionally processed commercial solution-treated (ST) austenitic stainless steels (types 310 ST, 316L ST, and 316TiM ST) following identical cathodic-charging conditions by means of X-ray and electron diffraction techniques. The behavior of theα′ phase of both RS and ST steels (that formα′ phase) during aging was found to be very similar, while the behavior of bothγ andε phases during aging of all of the RS steels studied, as compared to the equivalent ST steels, was different. The development of lower internal stresses and minor lattice expansion of the RS steels, as compared to the ST steels, is probably due to a different distribution of hydrogen within the near-surface layer of the RS steels than that of the ST steels, which appears to be related to the markedly different microstructural characterizations of the RS steels from the ST steels. Scanning and transmission electron microscopy (SEM and TEM) observations indicated that the tendency toward cracking along the columnar-like structure is typical of all of the charged RS steels studied. Formerly Research Associate, Department of Materials Engineering, Ben Gurion University of the Negev  相似文献   

6.
The effect of hydrogen on the mechanical properties of the metastable β alloy Ti-10V-2Fe-3Al was examined. The material was beta annealed and water quenched (B/WQ) to yield a nominally all-β microstructure, with a small volume fraction of athermal omega present. Tensile and notched bend bar tests were performed with differing levels of hydrogen concentration (~0 to >30 at. pct) obtained by Sieverts (gaseous) charging prior to beta annealing. The β phase was transformed to orthorhombic alpha double prime martensite (β") upon deformation. The volume fraction and morphology of the alpha double prime depended on the hydrogen concentration. The deformation-induced martensitic transformation changed from being stress-induced to being strain-induced with increased hydrogen concentration. High hydrogen concentrations also resulted in changes in fracture mode. At high hydrogen concentrations, where little or no martensite formed upon deformation, “intrinsic” (i.e., independent of microstructural modification) hydrogen effects were observed in the β phase. These intrinsic hydrogen effects, deleterious in nature, were taken to be evidence of hydrogen embrittlement in the body-centered cubic β phase. Formerly at Carnegie Mellon University.  相似文献   

7.
The effect of Si addition on the microstructure and shape recovery of FeMnSiCrNi shape memory alloys has been studied. The microstructural observations revealed that in these alloys the microstructure remains single-phase austenite (γ) up to 6 pct Si and, beyond that, becomes two-phase γ + δ ferrite. The Fe5Ni3Si2 type intermetallic phase starts appearing in the microstructure after 7 pct Si and makes these alloys brittle. Silicon addition does not affect the transformation temperature and mechanical properties of the γ phase until 6 pct, though the amount of shape recovery is observed to increase monotonically. Alloys having more than 6 pct Si show poor recovery due to the formation of δ-ferrite. The shape memory effect (SME) in these alloys is essentially due to the γ to stress-induced ε martensite transformation, and the extent of recovery is proportional to the amount of stress-induced ε martensite. Alloys containing less than 4 pct and more than 6 pct Si exhibit poor recovery due to the formation of stress-induced α′ martensite through γ-ε-α′ transformation and the large volume fraction of δ-ferrite, respectively. Silicon addition decreases the stacking fault energy (SFE) and the shear modulus of these alloys and results in easy nucleation of stress-induced ε martensite; consequently, the amount of shape recovery is enhanced. The amount of athermal ε martensite formed during cooling is also observed to decrease with the increase in Si.  相似文献   

8.
The thermal cycling of an Fe-17 wt pct Mn alloy between 303 and 573 K was performed to investigate the effects of thermal cycling on the kinetics of the γε martensitic transformation in detail and to explain the previous, contrasting results of the change in the amount of ε martensite at room temperature with thermal cycling. It was observed that the shape of the γε martensitic transformation curve (volume fraction vs temperature) changed gradually from a C to an S curve with an increasing number of thermal cycles. The amount of ε martensite of an Fe-17 wt pct Mn alloy at room temperature increased with thermal cycling, in spite of the decrease in the martensitic start (M s) temperature. This is due to the increase in transformation kinetics of ε martensite at numerous nucleation sites introduced in the austenite during thermal cycling.  相似文献   

9.
Stainless steels (SSs) having a stable and metastable austenitic phase were studied to see the influence of strain-induced phase transformation in the metastable austenitic stainless steel on the evolution of texture during cold rolling and aging. AISI 304L and 316L SS plates were unidirectionally cold rolled up to a 90 pct reduction and aged at different aging temperatures. The strain-induced transformation of austenite to α′-martensite phase and the evolution of texture in both the phases were studied as a function of rolling reduction as well as aging temperature in the metastable 304L austenitic stainless steel. The X-ray diffraction (XRD) technique was employed to quantify the volume fractions and characterize the texture of austenite and martensite phases in the rolled and aged conditions. Results are compared with the texture evolution in the stable austenitic 316L SS.  相似文献   

10.
A study has been made of the HE and SCC of a type 304 and a type 310 austenitic stainless steel, and the results correlated with the presence or absence of α′ martensite, determined by means of a ferrite detector. Hydrogen induced slow crack growth (SCG) was observed at room temperature when type 304 was stressed i) in 1 psig (∼105 N/m2) gaseous hydrogen, ii) after high temperature charging, and iii) while undergoing cathodic charging. The fracture surfaces corresponding to SCG were primarily transgranular and cleavage-like, and were found to be associated with α′. Conditions i) to iii) did not produce SCG in the type 310 steel, in which α′ martensite was not detected, nor did SCG occur when type 304 was stressed in gaseous hydrogen above the MD temperature (∼110°C). These observations indicated that the formation of the martensitic phase was a prerequisite for SCG under these test conditions. Stressing of type 310 while it was undergoing cathodic charging at room temperature was found to produce shallow, nonpropagating cracks, confirming earlier reports that austenite can be embrittled by hydrogen in the absence of α′. SCC occurred in both alloys in boiling aqueous MgCl2 (154°C) with no evidence for α′ formation. The results are discussed in terms of the mechanisms of HE and SCC. Formerly Research Associate, Department of Metallurgy and Mining Engineering, University of Illinois. Formerly Corrosion-Control Analyst with the Physical Plant at the University of Illinois.  相似文献   

11.
The isothermal phase transformation behavior in a biomedical Co-29Cr-6Mo alloy without carbon or nitrogen was investigated during aging at temperatures between 973 K and 1273 K (700 °C and 1000 °C) for up to 90 ks. Transformation from the γ to the ε phase did not occur at 1273 K (1000 °C) as the γ phase was more stable than the ε phase, and the σ phase precipitated at the γ grain boundaries. At 1173 K (900 °C), a γ → ε 1 phase transformation occurred by massive precipitation. Prolonged annealing at 1173 K (900 °C) led to a lamellar structure of ε 2 and σ phases at ε 1/ε 1 boundaries by a discontinuous/cellular reaction, expressed by the reaction equation ε 1 → ε 2 + σ. After decreasing the aging temperature to 973 K (700 °C), transformation from the γ to the ε phase occurred mainly by isothermal martensitic transformation, but a lathlike massive ε 1 phase and ε 2/σ lamellar colonies were also observed at the original γ-grain boundaries. It is likely that not adding carbon results in the promotion of the massive transformation and the precipitation of the σ phase during isothermal aging in the Co-29Cr-6Mo alloy system, whose composition corresponds to the ASTM F75 standard for metallic materials for surgical implantation. The resultant isothermal transformation behavior of the present alloy is described on the basis of thermodynamic calculations using Thermo-Calc.  相似文献   

12.
A Cu-15.0 at. pct Sn alloy has been chosen as a model alloy for the study of aging effects in copper-based shape memory alloys. Different thermal aging treatments were carried out to determine the effects of both parent phase and martensite aging on the amount of shape recovery and the characteristic transformation temperaturesM s ,A s , andA f . Aging of the martensite reduces both the amount of shape recovery and the extent of the reverse martensite → parent transformation. High martensite heating rates promote complete shape recovery and reverse transformation while the aging occurring during slow heating can inhibit or prohibit both. But irrespective of the martensite heating rate the transformation temperature hysteresis as given by (M s -A s ) is large for the Cu-15 pct Sn alloy compared to other shape memory alloys exhibiting thermoelastic behavior. On the other hand, some beneficial effects were noted when the Cu-15 pct Sn alloy was aged in the parent phase condition prior to subsequent transformation to martensite. TheM s ,A s , andA f were lowered following prior parent phase aging, possibly because of a change in long range order, but prior parent phase aging was found to diminish the deleterious effect of martensite aging. Both shape recovery and the extent of the reverse martensite → parent transformation are enhanced by prior parent phase aging. The enhancement is greater the higher the aging temperature or the longer the aging time at a given temperature. J. D. STICE, formerly Research Assistant at the University of Illinois  相似文献   

13.
This study was pursued to investigate the movement of γ/ε interfaces and the coalescence of ε martensite variants in an Fe-Mn binary system. An Fe-24 wt pct Mn tensile specimen was deformed with increasing tensile strain at room temperature. The microstructural changes at a fixed area of the tensile specimen were continuously observed using an optical microscope. Some of the γ/ε interfaces moved forward due to γε transformation, and the others moved backward due to its reverse transformation during the tensile deformation, depending on the orientation relationship between the tensile direction and each ε variant. The coalescence of ε martensite variants primarily occurs by the following three factors: (1) the reverse transformation of ε variants under an applied stress having a different direction from that of the ε variants’ shape change, (2) the nucleation and growth of new ε variants under an applied stress having the same direction as that of the ε variants’ shape change, and (3) the continuous growth of pre-existing ε variants under an applied stress having the same direction as that of the ε variants’ shape change.  相似文献   

14.
The strain distributions obtained from monotonic finite element method (FEM) calculations have been employed to model the low-cycle fatigue (LCF) behavior of Fe-C-Mo dual-phase steels. The microstructures considered have a continuous ferrite matrix (with Mo2C precipitates) surrounding martensite packets. Two microstructural parameters have been controlled: (1) the volume fraction of martensite and (2) the strength of the ferrite matrix. The FEM approximations show that highly strained regions dominate LCF lifetimes. The experimentally observed reductions in plastic strain life for increasing martensite volume fractions are described usingM ε , the strain magnification factor, which is obtained from the FEM analyses. Strengthening the ferrite matrix or reducing the volume fraction of martensite reducesM ε . The cyclic softening observed is qualitatively correlated with FEM predictions of increasing plastic strain in the martensite as the ferrite strength increases. The overall cyclic hardening-softening behavior results from the combination of ferritic hardening combined with martensitic softening. Formerly Graduate Student, Department of Materials Science, University of Virginia.  相似文献   

15.
16.
The transformation by cathodic hydrogen charging of a 1.95 wt pct C austenite is studied by X-ray diffraction and Mössbauer spectroscopy, and the morphology of the induced martensite, analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), is compared to that of the same alloy quenched at 78 K. Optimal charging current density is found to be at 2200 A/m2, and charging time is varied. Martensite crystals have three different shapes: long thin plates, “spear-like,” and “palm frond.” The habit plane is essentially {225}γ, and the serratures of the palm frond are obtained by (111)γ accommodation slip. The state of aging of the hydrogen-induced martensite at room temperature is similar to that of a martensite obtained by quench at 78 K and subsequently aged at much higher temperature, e.g., 97 °C for 1 hour, and displays the “tweed-like” or “salt and pepper” morphology of Génin’s Fe6C “carbon extended multiplets” which transform in situ into ε- or η-carbide precipitates at the same tem-perature, i.e. 117 °C, for 1 hour. The role of hydrogen in catalyzing the martensitic transfor-mation and affecting the aging kinetics is explored.  相似文献   

17.
The effect of high-pressure torsion (HPT) and annealing on hydrogen embrittlement (HE) of a type 304 stainless steel was studied by metallographic characterization and tensile test after hydrogen gas charging. A volume fraction of ~78 pct of the austenite transformed to α′ martensite by the HPT processing at an equivalent strain of ~30. Annealing the HPT-processed specimen at a temperature of 873 K (600 °C) for 0.5 hours decreased the α′ martensite to ~31 pct with the average grain size reduced to ~0.43 μm through the reverse austenitic transformation. Hydrogen charge into the HPT-processed and the HPT+annealed specimens in the hydrogen content of ~10 to 20 ppm led to no severe HE but appeared in the solution-treated specimen. Especially the 873 K (600 °C) annealed specimen had the ~1.4 GPa tensile strength and the ~50 pct reduction of area (RA) despite the hydrogenation.  相似文献   

18.
This article focuses on the effect of the microstructure on the activity of different deformation mechanisms and the resulting mechanical behavior of a metastable β Ti alloy (β-Cez). Various types of microstructures were produced, with given volume fractions of β phase (100 or 90 pct). These microstructures differed in the size of their β grains as well as in the distribution, shape, and size of the primary α particles. A statistical approach was also developed to characterize small variations in chemistry of the β phase between the various microstructures. It is shown that, even for similar volume fractions of β phase, changes in the microstructure strongly affect the mechanical response of the alloy. The mechanical response is controlled by the interplay between the two deformation modes operating in this alloy: formation of α″ deformation-induced martensite and activation of slip. The easier formation of stress-induced martensite leads to lower apparent yield stresses and a better work-hardening response. On the contrary, very limited work hardening is obtained when slip is activated solely. The differences in the ability of the martensitic transformation to occur can be understood by considering the effect on M s and T o of both the chemistry of the β phase and of constraining effects due to grain sizes and dislocations.  相似文献   

19.
20.
Tensile deformation behavior of mechanically stabilized Fe-Mn austenite   总被引:1,自引:0,他引:1  
The tensile deformation behavior of mechanically-stabilized austenite is investigated in Fe-Mn binary alloys. A 30 pct thickness reduction by rolling at 673 K (above the Af temperature) largely suppresses the austenite (γ) to hcp epsilon martensite (ε) transformation in 17Mn and 25Mn steels. However, the deformation behavior of the mechanically stabilized austenite in the two alloys differs significantly. In 25Mn steel, the onset of plastic deformation is due to the stress-induced γ→ ε transformation and results in a positive temperature dependence of the yield strength. The uniform elongation is enhanced by the γ → ε transformation during deformation. In 17Mn steel, bccα′ martensite is deformation-induced along with e and a plateau region similar to Lüders band deformation appears at the beginning of the stress-strain curve. The mechanical stabilization of austenite also suppresses the intergranular fracture of 17Mn steel at low temperatures. M. STRUM, formerly Candidate for Ph.D. at the University of California at Berkeley  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号