首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 93 毫秒
1.
张蕾 《冶金分析》2022,42(4):8-13
杂质含量是判定白刚玉质量等级的重要依据,因此准确快速测定白刚玉中杂质含量具有重要意义。目前,白刚玉中杂质含量的测定常采用湿法分析,然而这些方法繁琐耗时、分析周期长,不适合大批量检测要求。实验采用乙醇为粘接剂,聚酯(PET)薄膜包裹粉末压片法制样,以棕刚玉、白刚玉、氧化铝标准样品按照不同的比例,配制成各检测组分含量从低到高具有一定梯度的白刚玉校准样品,对其拟合校准曲线,建立了X射线荧光光谱法(XRF)同时测定白刚玉中SiO2、CaO、Fe2O3、K2O、Na2O、TiO2、P2O5含量的分析方法。通过人工配制白刚玉校准样品,使检测范围更接近白刚玉杂质组分含量范围,解决了白刚玉标准样品少的技术问题。引入PET薄膜到X射线荧光光谱压片法中来不仅可以减少粉尘污染,把对仪器损坏的几率降至最低,而且还可以防止压片暴露在空气中,增加了压片保存时间。通过试验确定的制样条件为:试样研磨通过400目(38 μm)筛,压片机压力为3.0 t,保压时间为30 s。采用OXSAS软件自带的TL+方程进行基体效应校正,校准曲线线性相关系数均大于0.99,各组分检出限在3.7~27 μg/g之间。对白刚玉试样进行了精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)在 1.7%~4.5%之间。采用实验方法对白刚玉标准样品和实际样品进行测定,结果与参考值或标准方法GB/T 3044—2020的测定值相吻合。  相似文献   

2.
张蕾 《冶金分析》2022,42(5):67-73
快速准确地测定炉渣中多种组分含量,既是冶炼生产工艺的要求,也是环境保护和冶金废弃物综合利用的要求。实验采用聚酯(PET)薄膜包裹粉末压片法制样,选取与待测样品粒度一致的炉渣标准样品与高纯物质按照不同的比例,配制成各组分含量从低到高具有一定梯度炉渣校准样品,对其拟合校准曲线,建立了X射线荧光光谱法(XRF)同时测定高炉渣、转炉渣、电炉渣或平炉渣中SiO2、TFe、Al2O3、CaO、MgO、TiO2、S、P2O5、TMn含量的快速分析方法。PET薄膜包裹压片制样,减少了粉尘污染,把对仪器损坏的几率降到了最低,而且可以防止压片暴露在空气中,增加压片保存时间。通过调整仪器分析参数,控制试样在粒度大小方面一致以及采用OXSAS软件自带的TL+方程同时进行谱线重叠干扰校正和基体效应校正,有效地克服了炉渣复杂体系中各元素谱线干扰与基体效应,实现了粉末压片制样-X射线荧光光谱法对炉渣各组分的测定。按照实验方法对高炉渣样品进行精密度试验,结果的相对标准偏差(RSD,n=10)为0.16%~2.1%。采用实验方法对高炉渣、转炉渣、电炉渣或平炉渣标准样品和实际样品进行测定,结果与认证值或熔融法测定值相吻合。  相似文献   

3.
镁铝质耐火材料广泛应用于钢铁、水泥、玻璃等行业,在检验工作中,多采用GB/T 5069-2015进行镁铝质耐火材料的化学分析,但该方法耗时相对较长.镁铝质耐火材料标准样品较少,实验室采用镁砂、镁铝砖、镁石等标准样品以不同比例混合自制标准样品,克服了镁铝质耐火材料标样不足的局限;以熔融法制样,建立了测定镁铝质耐火材料中主...  相似文献   

4.
粗铜吹炼炉渣组分的检测没有相应的国家或行业标准可以借鉴,为此实验采用粉末压片法制样,建立了X射线荧光光谱法(XRF)测定粗铜吹炼炉渣组分的方法。通过试验确定分析条件为:磨样时间60s,粒度180目(84μm);压样压力25t;保压时间25s;工作电压电流60kV、50mA。为克服Pb、Sb、Bi组分的校准曲线线性差的问题,利用理论α系数和经验系数法进行了校正,各组分校准曲线的均方根偏差(RMS)和品质因子(K)均满足要求。对同一闪速粗铜吹炼炉渣压制7个压片以进行精密度试验,结果表明,对于质量分数不小于1%的常量组分,测定结果的相对标准偏差(RSD)小于2%;质量分数小于1%的微量组分,测定结果的RSD小于10%。对粗铜吹炼炉渣试样进行分析,测定值与其他方法的测定值基本一致,尽管Cu分析结果偏差较大,但仍能满足炉前快速分析的要求。  相似文献   

5.
采用6.000 0 g四硼酸锂熔剂挂壁打底铂金坩锅,0.600 0 g试样、1.500 0 g硝酸钠、1.500 0 g过氧化钡混合后放入熔剂挂壁打底坩埚内,加50 mg 碘化铵为脱模剂,在750 ℃预氧化35 min,然后在1 100 ℃下熔融15 min,避免对铂金坩埚产生腐蚀,获得均匀的玻璃片。采用铝质耐火材料标准样品、碳化硅标准样品和纯试剂合成系列含碳化硅铝质耐火材料的校准样品,实现了X射线荧光光谱法(XRF)测定含碳化硅铝质耐火材料中氧化铝、总硅、氧化钾、氧化铁、氧化锰、氧化镁、氧化钙、二氧化钛、五氧化二磷等9组分。对含碳化硅的铝质耐火材料样品进行精密度考察,发现主含量组分氧化铝(w(Al2O3)=55.20%)和全硅(w(TSi)=22.50%)的相对标准偏差(RSD,n=11)为0.20%、0.23%,其他组分的RSD在0.27%~13.3%之间。采用实验方法对以标准样品和纯试剂配制的含碳化硅铝质耐火材料合成标准样品和含碳化硅铝质耐火材料实际样品进行分析,并与合成标准样品的理论值及实际样品的湿法分析值进行比对,结果显示了较好的一致性。  相似文献   

6.
粉末压片法是一种理想的绿色环保制样方法,简单快速,但是粒度效应对测定结果的影响很大,限制了这种方法在很多领域的应用。为了解决粒度效应对粉末直接压片法的影响,实验利用超高速行星式超细碎样机,将磷矿石标准物质粉碎至微米级,采用粉末直接压片制样,利用波长色散X射线荧光光谱仪对磷矿石中12种组分(氟、五氧化二磷、二氧化硅、三氧化二铝、全三氧化二铁、氧化锰、二氧化钛、氧化锶、氧化钙、氧化锰、氧化钾、氧化钠)进行了测定。结果表明,将样品粉碎至微米级,能够有效地克服样品的粒度效应,获得了比较满意的结果;特别是将氟的测定范围提高到了10.68%,对轻组分氧化钾和氧化钠的测定结果也很好。采用多种磷矿石标准物质和人工配制标准物质制作校准曲线,各组分的均方根为0.001 1~0.53。校准曲线采用经验系数和康普顿散射线内标法校正组分间的吸收-增强效应,方法的检出限为3~282 μg/g。对两个磷矿石国家标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)为0.17%~5.2%。对采用标准物质配制的混合标准样品进行准确度考察,测定值与参考值一致。  相似文献   

7.
朵勇  赵征宇 《昆钢科技》2002,(3):9-16,5
粉末压片X射线荧光光谱法(简称XRF法)广泛应用于钢铁行业生产原料的分析中,本文研究应用粉末压片XRF法分析三烧烧结矿的成分。  相似文献   

8.
Cl和Br是土地质量调查和评价的重要指标,X射线荧光光谱法测定土壤和水系沉积物中Cl和Br的难点在于Cl容易污染,测量值易受测量时间、测量次数等因素影响,方法稳定性差;而Br的地球化学背景值低,方法准确性和稳定性较差.实验重点对Cl和Br元素的谱线选择、测量时间、基体校正以及Cl元素测量时样片的放置时间、测量次数和Br...  相似文献   

9.
快速准确测定地质样品中La、Ce、Pr、Nd、Sm,能够为寻找稀土矿物提供基础依据。实验在对样品粒度、样品的磨制方法优化的基础上,选取与待测样品粒度一致、基体相似、各元素含量有梯度且含量范围足够宽的岩石、土壤、水系沉积物、稀土和部分多金属系列标准物质作为校准样品,用综合数学校正公式校正谱线重叠干扰,实现了粉末压片-X射线荧光光谱法(XRF)对地质样品中轻稀土元素La、Ce、Pr、Nd、Sm的测定。实验表明,当样品粒度不小于160目(0.097mm)时,测定结果与电感耦合等离子体质谱法(ICP-MS)最相符;对60~80g样品用粉碎机磨制4min,过160目筛的过筛率为96.7%~98.5%,过筛率能满足地质标准(DZ/T 0130.2—2006)过筛率大于95%要求,筛上团聚颗粒轻磨后100%过160目筛。各元素的检出限如下所示:La 2.93μg/g、Ce 3.86μg/g、Pr 2.84μg/g、Nd 2.97μg/g、Sm 4.18μg/g。选择地质实际样品,按照实验方法分别重复制备7个样片,La、Ce、Pr、Nd、Sm测定结果的相对标准偏差(RSD,n=7)为0.81%~1.4%。选取4个地质样品,分别按照选定的方法对La、Ce、Pr、Nd、Sm进行测定,测得结果与参考值(电感耦合等离子体质谱法多次测量的平均值)吻合。取未参与校准由线回归的稀土、土壤、水系沉积物、岩石标准物质各一个,按照实验方法分别进行5次平行测定,计算各轻稀土元素的测定平均值,结果表明,测定值均在标准值误差允许范围内。  相似文献   

10.
采用粉末压片制样,使用X射线荧光光谱仪对含铌多金属矿样中的铌进行测定。由于含铌的多金属矿标样极少且含量较低,实验选取钽矿石标准样品、矿区具有代表性的化学法定值多个样品,及其他土壤、岩石、多金属矿物标准样品、矿区定值样品混合配制的校准样品,制成一套铌含量5.9~2 700 μg/g、梯度适当的校准样品系列,绘制的铌校准曲线相关系数为0.998 6。采用经验系数和康普顿散射线内标法校正了基体效应,用Omnian 近似定量软件、化学分析法与岩矿鉴定分析,确定了矿区矿物中主要成分SiO2、Al2O3、CaO、MgO、K2O、Pb、Zn、Cu、Fe、Zr、Mo、Rb、Hf、Th、U、Ti、Ga及稀土的最高允许量。综合考虑样品基体对铌检出限的影响,实验选取8个标准样品计算出检出限的平均值为1.62 μg/g。对岩石标样进行精密度考察,结果的相对标准偏差(RSD,n=12)为2.2%。对标准样品及矿区实际样品进行分析,测定值与认定值、实验室内其他方法的测定值及其他实验室的测定值吻合,满足《地质矿产实验室测试质量管理规范》的要求。  相似文献   

11.
刘林  王勇  曾晖  施宗友 《冶金分析》2019,39(10):78-82
快速准确测定煤中氟含量,对查清我国煤中氟的分布规律以及生产控制有着重要意义。将样品粉碎至粒度小于74μm,采用硼酸镶边,在压力35t条件下保压25s,制成样片,采用经验系数法校正基体效应,建立了粉末压片制样-波长色散X射线荧光光谱法测定煤中氟含量的方法。采用不同氟含量(质量分数范围37~1496mg/kg)的煤标准样品绘制校准曲线,校准曲线线性相关系数为0.9998,方法检出限为3mg/kg。采用实验方法对3个不同氟含量的煤实际样品平行测定10次,测得结果的平均值与国家标准方法GB/T 4633—2014采用的高温燃烧水解-氟离子选择电极法基本一致,相对标准偏差(RSD,n=10)为1.9%~3.5%。将实验方法应用于煤标准样品中氟含量的测定,测得结果与认定值基本一致。  相似文献   

12.
直接还原铁中的Si、Al、P、Mg、Ca和S等杂质元素对钢的质量有重要影响,目前一般采用化学湿法分析和熔融制样-X射线荧光光谱法检测,程序相对繁琐。为缩短检测周期,研究采用粉末压片制样-X射线荧光光谱法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,通过试验确定将淀粉作为粘结剂,在7.000 0 g样品中加入0.350 0 g淀粉,研磨120 s混匀并使其粒度小于0.074 mm,于30 t压力下压制成片。选取与待测试样组成、结构及粒度相似的具有一定梯度含量的直接还原铁标准样品/校准样品建立校准曲线,SiO2、Al2O3、P、MgO、CaO和S校准曲线的线性相关系数分别为0.999、0.998、0.992、0.995、0.997和0.999。按照实验方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果的相对标准偏差(RSD,n=11)分别为0.014%、0.030%、0.076%、0.009%、0.026%和0.047%;分别采用实验方法与国家标准方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果相一致。方法满足进口直接还原铁样品的快速检测要求。  相似文献   

13.
直接还原铁中的Si、Al、P、Mg、Ca和S等杂质元素对钢的质量有重要影响,目前一般采用化学湿法分析和熔融制样-X射线荧光光谱法检测,程序相对繁琐。为缩短检测周期,研究采用粉末压片制样-X射线荧光光谱法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,通过试验确定将淀粉作为粘结剂,在7.000 0 g样品中加入0.350 0 g淀粉,研磨120 s混匀并使其粒度小于0.074 mm,于30 t压力下压制成片。选取与待测试样组成、结构及粒度相似的具有一定梯度含量的直接还原铁标准样品/校准样品建立校准曲线,SiO2、Al2O3、P、MgO、CaO和S校准曲线的线性相关系数分别为0.999、0.998、0.992、0.995、0.997和0.999。按照实验方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果的相对标准偏差(RSD,n=11)分别为0.014%、0.030%、0.076%、0.009%、0.026%和0.047%;分别采用实验方法与国家标准方法测定直接还原铁中SiO2、Al2O3、P、MgO、CaO和S,结果相一致。方法满足进口直接还原铁样品的快速检测要求。  相似文献   

14.
芦飞  王瑛 《冶金分析》2015,35(7):67-72
由于不锈钢标渣在市场上很难购买,且熔融制样-X射线荧光光谱(XRF)无法满足炉前不锈钢渣样的快速分析要求,实验利用转炉渣、高炉渣、平炉渣等标准样品和文献方法定值的不锈钢渣生产样品,建立熔融制样-X射线荧光光谱的校准曲线,并用于不锈钢渣样的定值分析,将此定值分析结果用于压片制样-X射线荧光光谱校准曲线的绘制,从而实现不锈钢渣中CaO、SiO2、Al2O3、MnO、MgO、TFe、P2O5、TiO2、Cr2O3和NiO的炉前快速分析。对熔融制样的条件及方法的精密度和准确度均进行了考察,保证了绘制校准曲线用不锈钢渣测定结果的准确性。通过试验确定压片制样-X射线荧光光谱的分析条件为:研磨时间50 s;40 g试样中添加5粒粘合剂;100 kN压力,保压时间15 s进行压片。各组分校准曲线的相关系数均大于0.999。对同一不锈钢渣进行压片制样-XRF的精密度考察,各组分测定结果的相对标准偏差为0.43%~4.6%;准确度验证结果表明,压片制样的测定结果同熔融制样的测定结果一致,但压片制样XRF满足炉前不锈钢渣分析量大、分析速度快的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号