首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study experimentally investigates the effect of Cr2O3 on the viscosity of molten slags. The viscosities of CaO-SiO2-10 pct Al2O3-Cr2O3 quaternary slags with two different binary basicities (R, basic slag with R = 1.2 and acidic slag with R = 0.8) were measured by the rotating cylindrical method from 1813 K to 1953 K (1540 °C to 1680 °C). The results showed that the viscosity of both types of slag decreased as the Cr2O3 content increased, but the viscosity of acidic slags exhibited a greater decrease. The slags showed good Newtonian behavior at such high temperatures. Cr2O3 could act as a network modifier to simplify the Si-O-Si tetrahedral structure, as verified by the Raman spectral analysis, which was consistent with the decreasing trend of viscosity. The activation energy of viscous flow decreased slightly with increasing Cr2O3, but increasing the basicity seemed to be more effective in decreasing the viscosity than adding Cr2O3.  相似文献   

2.
During ladle furnace refining, initial Al2O3 inclusions generally transform into MgO·Al2O3 spinel inclusions; these generated spinel inclusions consequently deteriorate the product quality. In this study, the transformation from Al2O3 to MgO·Al2O3 was investigated by immersing an Al2O3 rod into molten steel, which was in equilibrium with both MgO and MgO·Al2O3 spinel-saturated slag. A spinel layer, with a thickness of 4 μm, was generated on the Al2O3 rod surface just 10 s after its immersion at 1873 K (1600 °C). The thickness of the formed spinel layer increased with the immersion period and temperature. Moreover, the MgO content of the generated spinel layer also increased with the immersion period. In this study, the chemical reaction rate at 1873 K (1600 °C) was assumed to be sufficiently high, and only diffusion was considered as a rate-controlling step for this transformation. By evaluating the activation energy, MgO diffusion in the generated spinel layer was found to be the rate-controlling step. In addition, this estimation was confirmed by observing the Mg and Al concentration gradients in the generated spinel layer. The results of this study suggest that the MgO diffusion in the spinel inclusions plays a substantial role with regard to their formation kinetics.  相似文献   

3.
In thermodynamic modeling of the desulfurization of steel by CaO–SiO2–MgO–Al2O3–B2O3 slag on the basis of HSC 6.12 Chemistry software (Outokumpu), the influence of the temperature (1500–1700°C), the slag basicity (2–5), and the B2O3 content (1–4%)1 on the desulfurization is analyzed. It is found that the sulfur content is reduced with increase in the temperature from 1500 to 1700°C, within the given range of slag basicity. At 1600°C, the sulfur content in the metal is 0.0052% for slag of basicity 2; at 1650°C, by contrast, its content is 0.0048%. Increase in slag basicity from 2 to 5 improves the desulfurization, which increases from 80.7 to 98.7% at 1600°C. If the B2O3 content in the slag rises, desulfurization is impaired. At 1600°C, the sulfur content in the metal may be reduced to 0.0052 and 0.0098% when using slag of basicity 2 with 1 and 4% B2O3, respectively; in the same conditions but with slag of basicity 5, the corresponding values are 0.00036 and 0.00088%, respectively. Note that desulfurization is better for slag without B2O3. According to thermodynamic modeling, metal with 0.0039 and 0.00019% S is obtained at 1600°C when using slag of basicity 2 and 5, respectively, that contains no B2O3. The results obtained by thermodynamic modeling for the desulfurization of metal by CaO–SiO2–MgO–Al2O3–B2O3 slag of basicity 2–5 in the range 1500–1700°C are consistent with experimental data and may be used in improving the desulfurization of steel by slag that contains boron.  相似文献   

4.
The electrical conductivity of commercially challenging KAlCl4–ZrCl4 molten mixtures has been studied as a function of temperature (in the range from 345°C to 500°C) and the ZrCl4 concentration (0?32.5mol %) using cells of a unique design. It is found to vary in the range from 0.41 to 0.80 S cm–1, increasing with temperature or when the mole concentration of zirconium tetrachloride in molten mixtures decreases.  相似文献   

5.
The calculated and experimental vertical ZrO2–Y2O3 sections of the Zr–Y–O system are compared to find the region of a stable fluorite structure of yttrium-stabilized zirconia (YSZ). X-ray diffraction (XRD) and Raman scattering are used to study the crystal and local structures of mixed oxide 0.82ZrO2 · 0.18Y2O3 (18YSZ) powders prepared by isothermal annealing of a precursor precipitated from a salt solution. The formation of a fluorite-type fcc structure (space group \(Fm\overline 3 m\)) in the powders is detected by XRD. Raman scattering study of the local structure of the cubic 18YSZ powders revealed traces of the tetragonal phase in them.  相似文献   

6.
7.
An experimental technique was applied for simultaneous determinations of the activities of P2O5 and FexO in slags. With this technique, phosphorus-containing liquid copper was heated inside an iron crucible at temperatures below 1600 K. When copper is melted, the iron crucible dissolves into liquid copper, to a small extent, to form ternary {Cu-Fe-P} liquid alloy, while 〈Cu-Fe-P〉 solid solutions are formed on the inner wall of the iron crucible. Slags containing tri-calcium phosphate were then brought into equilibrium with {Cu-Fe-P} liquid alloy. By measuring the equilibrium oxygen partial pressures with the aid of a zirconia electrolyte cell, activities of P2O5 and FexO were obtainable. Between 1553 and 1593 K, the P2O5 activities could be expressed as
The activities of P2O5 and FexO thus obtained were thermodynamically consistent with those deduced from the phase diagram.  相似文献   

8.
Silicate slag system with additions Nb and RE formed in the utilization of REE-Nb-Fe ore deposit resources in China has industrial uses as a metallurgical slag system. The lack of a phase diagram, theoretical, and thermodynamic information for the multi-component system restrict the comprehensive utilization process. In the current work, solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 quaternary system at 1273 K (1000 °C) were investigated experimentally by the high-temperature equilibrium experiment followed by X-ray diffraction, scanning electron microscope, and energy dispersive spectrometer. Six spatial independent tetrahedron fields in the CaO-SiO2-Nb2O5-La2O3 system phase diagram were determined by the Gibbs Phase Rule. The current work combines the mass fraction of equilibrium phase and corresponding geometric relation. A determinant method was deduced to calculate the mass fraction of equilibrium phase in quaternary system according to the Mass Conservation Law, the Gibbs Phase Rule, the Lever’s Rule, and the Cramer Law.  相似文献   

9.
The phase equilibria and liquidus temperatures in the ZnO-“FeO”-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.  相似文献   

10.
The ferromagnetic-antiferromagnetic concentration transition in Fe65(Ni1 − x Mn x )35 alloys is studied by neutron diffraction and small-angle magnetic neutron scattering (SMNS). The Curie and Néel temperatures are measured, and the antiferromagnetic moments and the cross sections of SMNS by magnetic heterogeneities are determined. The parameters of spin density fluctuations in the heterogeneities are obtained. A cluster mechanism of the nucleation of magnetic phases is revealed, and the spin-glass freezing temperatures are estimated. A low-temperature diagram is constructed for the magnetic states of the alloys.  相似文献   

11.
In this study, the effect of Al2O3–TiB2/Fe complex ceramic–metal reinforcement (CCMR) on wear and mechanical properties of Al-(Al2O3–TiB2/Fe) composites were investigated. For this purpose, Al2O3–TiB2/Fe CCMR was synthesized by mechanochemical process. The produced reinforcement powders were added to Al matrix, milled for 10 h and then hot extruded. The results showed that the metallic component (Fe rich phase) in this reinforcement acted as a pin, sticking the ceramic parts (Al2O3–TiB2) to Al matrix. The best volume percentage of CCMR in Al matrix was recognized to be about 2.5 %. This composite showed a combination of wear resistance (0.005 mg/m), strength (500 MPa) and ductility (of about 6 %).  相似文献   

12.
The simplex lattice method of planning experiments is used to study the viscosities of CaO–SiO2–Al2O3–8% MgO–4% B2O3 slags in a wide chemical composition range. For each viscosity, we developed an adequate mathematical model in the form of a reduced third-order polynomial. The results of mathematical simulation are presented in composition–viscosity diagrams. Composition regions with a high fluidity of slags, the viscosities of which are 0.8–1.2 Pa s in the temperature range 1500–1600°C, are indicated in the diagrams.  相似文献   

13.
In this work, the effect of aging period on the characteristic transformation temperatures, thermodynamic parameters and structural variations of CuAlNiMn shape memory alloys were investigated. Aging was performed at above the austenite finish temperature of the un-aged specimen (120°C) for six different retention times, namely 1h, 2h, 3h, 4h, 5h and 6h. The changes in the transformation temperatures were examined by differential scanning calorimetry at different heating/cooling rates. The aging period was found to have an effect on the characteristic austenite and martensite transformation temperatures and thermodynamic parameters such as the enthalpy and entropy of alloys. High-temperature order-disorder phase transitions were determined using a differential thermal analysis, which showed that all the un-aged and aged specimens had an A2 → B2, B2 → L21 and an L21 → 9R, 18R transition. The structural analysis of the un-aged and aged specimens was performed through X-ray diffraction measurements at room temperature. The intensities of the diffraction peaks varied according to the aging time.  相似文献   

14.
Experimental results are presented showing that rapid cooling of dicalcium silicate is accompanied by delay of structural processes, which leads to a decreasing in temperature of the phase transition α′ L → β-Ca2SiO4. As starting materials, nepheline ore and limestone were used. In preparing the charge, the dosage of starting components was calculated for obtaining a molar ratio of CaO/SiO2 = 2.0. From the charge, the series of samples was prepared. Each of the samples was sintered to t = 1250°C with subsequent keeping of the material at this temperature for 30 min. Then the samples were subjected to rapid cooling in air to t = 750, 650, 550, 450, 350, 250, 150, and 25°C. By means of quantitative X-ray powder diffraction analysis using a DRON-3 setup, the content of α′ L and β-Ca2SiO4 was determined in the samples. The data allow us to suppose the occurring polymorphic transformations in dicalcium silicate have a resonance character.  相似文献   

15.
16.
The present study was aimed at exploring the influence of compositions on the deformation behavior of inclusion system CaO–Al2O3–SiO2, during hot rolling processes. The plastic deformations of four inclusions with different compositions, at different rolling temperatures (800, 850, 900, 982 and 1100 °C), were simulated using a finite element model. The equivalent plastic strain distributions and the shapes of the inclusions after rolling were obtained via the model. The influences of rolling temperature, flow stresses of inclusions and matrix, reduction, etc., on the void length and the deformation degree of inclusions were analyzed. The critical temperatures of the four inclusions during hot rolling were different. No voids occurred above the critical temperature. Voids only occurred along the length direction, but not the width and thickness directions, below the critical temperature. Low rolling temperatures led to long void length and small deformation of inclusions. The inclusion with high SiO2 content had a high critical temperature and a high risk of void formation. Results generated by the experiment on deformation behaviors of inclusions with different SiO2 content, were in good agreement with the simulated results.  相似文献   

17.
The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al–Al2O3–graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5–4. We are the first to synthesize an in situ hybrid Al–Al2O3–graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.  相似文献   

18.
The “FeO”-containing slags play an important role in the operation of an ironmaking blast furnace (BF), in particular the primary slags such as the system “FeO”-CaO-SiO2-Al2O3-2 mass pct MgO with CaO/SiO2 weight ratios of 1.3, 1.5, and 1.8 saturated with metallic iron. To investigate the characteristics of such a slag system and its behavior in BF, the phase equilibria and liquidus temperatures in the slag system have been experimentally determined using the high-temperature equilibration and quenching technique followed by an electron probe X-ray microanalysis (EPMA). Isotherms between 1553 K and 1603 K (1280 °C and 1330 °C) were determined in the primary phase fields of dicalcium silicate, melilite, spinel, and monoxide [(Mg,Fe2+)O]. Pseudo-ternary phase diagrams of (CaO + SiO2)-Al2O3-“FeO” with a fixed MgO concentration at 2 mass pct and at CaO/SiO2 ratios of 1.3, 1.5, and 1.8 have been discussed, respectively, simplifying the complexity of the slag system for easy understanding and applying in BF operation. It was found that the liquidus temperatures increase in melilite and spinel primary phase fields, but decrease in dicalcium silicate and monoxide primary phase fields with increasing Al2O3/(CaO + SiO2) ratio. In addition, the liquidus temperatures decrease with increasing “FeO” concentration in dicalcium silicate and melilite primary phase fields, while showing an increasing trend in the spinel and monoxide primary phase fields. The data resulted from this study can be used to improve and optimize currently available database of thermodynamic models used in FactSage.  相似文献   

19.
20.
The effect of the wet milling time on the magnetic properties of powder compositions consisting of the hard magnetic Sm2Fe17N x (x = 2.9–3.0) nitride and a rapidly quenched Nd9.6Fe76.3Co4.3Zr3.4B6.4 (at %) alloy, which are taken in different mass proportions, is studied. The compositions containing no more than 20 wt % alloy are found to exhibit a substantial increase in the magnetic characteristics as compared to those of the nitride. It is shown that the determining effect on the coercivity is related to the degree of structural imperfection of Nd–Fe–B powders, whereas the specific remanent magnetization and the specific magnetization in a field of 2 T are determined by the corresponding characteristics of the alloy. The optimum composition and efficient treatment conditions for powder mixtures are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号