首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Microprobe analysis has been applied to the boundary layers between fibers and matrix to examine the phase composition in relation to mode of extrusion for composite materials based on iron and copper as reinforced with molybdenum and steel fibers. The width of the interaction zone varies from 2 to 4 µm. The phases correspond to the phase diagrams for these systems. Fractography indicates the failure mechanism for reinforced composites under conditions of stress and strain. At the points of application of shock loads, there is planar transverse fracture in the fibers by the cleavage mechanism. The peripheral layers are subject to viscous failure in the fibers with the formation of necks. Extrusion produces plastic strain uniform throughout the fiber length, and there are no breaks in the fibers, which provides conditions for complete realization of the strength of the reinforcing phase.  相似文献   

2.
The results of drained triaxial tests on fiber reinforced and nonreinforced sand (Osorio sand) specimens are presented in this work, considering effective stresses varying from 20 to 680?kPa and a variety of stress paths. The tests on nonreinforced samples yielded effective strength envelopes that were approximately linear and defined by a friction angle of 32.5° for the Osorio sand, with a cohesion intercept of zero. The failure envelope for sand when reinforced with fibers was distinctly nonlinear, with a well-defined kink point, so that it could be approximated by a bilinear envelope. The failure envelope of the fiber-reinforced sand was found to be independent of the stress path followed by the triaxial tests. The strength parameters for the lower-pressure part of the failure envelope, where failure is governed by both fiber stretching and slippage, were, respectively, a cohesion intercept of about 15?kPa and friction angle of 48.6?deg. The higher-pressure part of the failure envelope, governed by tensile yielding or stretching of the fibers, had a cohesion intercept of 124?kPa, and friction angle of 34.6?deg. No fiber breakage was measured and only fiber extension was observed. It is, therefore, believed that the fibers did not break because they are highly extensible, with a fiber strain at failure of 80%, and the necessary strain to cause fiber breakage was not reached under triaxial conditions at these stress and strain levels.  相似文献   

3.
A set of 30 concrete beams reinforced with carbon/epoxy FRP (fiber-reinforced plastic) and four reinforced with comparable size steel rebars were subjected to static bending tests. Adequate bond between the FRP and the concrete was obtained, due to the use of carbon fiber overwrap on the smooth pultruded FRP rods. With adequate bond, the large strain to failure (>2%) of the FRP determines the ductility and failure mode of the FRP reinforced beams. An analytical evaluation of the fracture energy in these experiments shows that there is ductility due to the large fraction of the total strain energy that is absorbed in the concrete, because of the formation of distributed cracking. Variations in overwrap configuration, addition of steel stirrups, addition of polypropylene fibers, and comparison with four beams reinforced with equivalent steel reinforcement were also analyzed.  相似文献   

4.
Flexural Strengthening of RC Beams with Cement-Based Composites   总被引:1,自引:0,他引:1  
In this paper, the effectiveness of fiber-reinforced cementitious matrix (FRCM) materials for the strengthening of reinforced concrete (RC) beams is experimentally investigated. Bending tests on RC beams strengthened with different FRCM materials, made out of (1)?carbon fiber nets; and (2)?poliparafenilenbenzobisoxazole (PBO) fiber nets embedded in cement-based matrix, are performed. For case (2), different net shapes, cementitious matrices, and a number of net layers were considered. Depending on the type of fibers and matrix, different flexural debonding failure modes are identified. The fiber strain at debonding is evaluated by comparing the experimental results with those obtained with two different theoretical models. The results obtained in this study confirm the effectiveness of FRCM materials for the strengthening of RC structures and encourage further experimental and theoretical work on the topic. A better understanding of the debonding phenomenon is crucial for an optimal design of the strengthening material. The way in which the nature of fibers and matrices and the number of layers control the performance of the strengthened members is also investigated in the present paper.  相似文献   

5.
Strain Distribution within Geosynthetic-Reinforced Slopes   总被引:2,自引:0,他引:2  
Geosynthetic-reinforced slopes are conventionally designed using methods based on limit equilibrium. In order to estimate the factor of safety against internal stability using these methods, the distribution of the reinforcement peak tensile forces with height must be assumed. A linear distribution of reinforcement peak tension with height, with zero tension at the crest and maximum peak tension at the toe of the structure, has often been assumed. Although this assumption may be appropriate for the design of vertical geosynthetic-reinforced walls, little evidence has been collected so far justifying this distribution for the design of geosynthetic-reinforced slopes. A combination of centrifuge testing and digital image analysis is undertaken in order to obtain the strain distribution within geosynthetic-reinforced slopes under prefailure conditions. Specifically, digital image analysis techniques are used to determine the displacement distribution along reinforcement layers in reduced-scale models subjected to increasing g levels. A sigmoid function was useful to fit raw displacement data and estimate the strain distribution along reinforcement layers. Analysis of reinforcement strain results shows that the location of the reinforcement maximum peak strain does not occur near the toe of the structure, but was located approximately at midheight of the reinforced slopes, at the point along the critical failure surface directly below the crest of the slope. The pattern of reinforcement peak strain with height obtained for prefailure conditions is similar to that obtained for failure conditions. The estimated factor of safety is found to be a good indicator of the magnitude of the reinforcement maximum peak strain for geosynthetic-reinforced slopes built with different configurations.  相似文献   

6.
This paper presents an analytical model to predict the behavior of concrete-filled rectangular fiber reinforced polymer (FRP) tubes (CFRFTs), subjected to bending and axial loads. The model accounts for different laminate structures of the flange and web of the tube. Gradual reduction of stiffness, resulting from progressive failure of FRP layers oriented at various angles is considered through the ultimate laminate failure approach. The model adopts cracked section analysis, using layer-by-layer approach and accounts for totally and partially filled tubes. The model predicts the moment–curvature responses of beams, load–strain responses of columns, and complete interaction curves of beam–columns. The model is verified using experimental results and is used to study the effects of laminate structure, hybrid laminates, thickness of the tube and optimization of partially filled tubes. Comparisons of CFRFT with conventional reinforced concrete (RC) sections showed that CFRFT could provide axial load–bending moment interaction curves comparable to those of RC sections of similar reinforcement index. Also, providing a small fraction of carbon fibers in the flanges could substantially improve flexural performance. The first ply failure approach could highly underestimate the strength of CFRFT.  相似文献   

7.
The research presented in this paper evaluates the flexural performance of bridge deck panels reinforced with 2D fiber-reinforced polymer (FRP) grids. Two different FRP grids were investigated, one reinforced with a hybrid of glass and carbon fibers and a second grid reinforced with carbon fibers only. Laboratory measured load-deflection, load-strain (reinforcement and concrete), cracking, and failure behavior are presented in detail. Conclusions regarding failure mode, limit-state strength, serviceability, and deflection compatibility relative to AASHTO mandated criteria are reported. Test results indicate that bridge decks reinforced with FRP grids will be controlled by serviceability limit state and not limit-state ultimate strength. The low axial stiffness of FRP results in large service load flexural deflections and reduced shear strength. In as much as serviceability limits design, overreinforcement is recommended to control deflection violation. Consequently, limit-state flexural strength will be compression controlled for which reduced service stresses or ACI unified compression failure strength reduction factors are recommended.  相似文献   

8.
The results of an experimental and numerical study of the flexural behavior of reinforced concrete beams strengthened with glass-fiber-reinforced-polymer (GFRP) laminates are presented in this paper. In the experimental program, ten strengthened beams and two unstrengthened beams are tested to failure under monotonic loading. A number of external GFRP laminate layers and bond length of GFRP laminates in shear span are taken as the test variables. Longitudinal GFRP strain development and interfacial shear stress distribution from the tests are examined. The experimental results generally showed that both flexural strength and stiffness of reinforced concrete beams could be increased by such a bonding technique. In the numerical study, an eight-node interface element is developed to simulate the interface behavior between the concrete and GFRP laminates. This element is implemented into the MARC software package for the finite-element analyses of GFRP laminate strengthened reinforced concrete beams. Reasonably good correlations between experimental and numerical results are achieved.  相似文献   

9.
This paper presents the experimental results of the first phase of a study undertaken at the American University of Beirut to examine the effectiveness of fiber reinforced polymer (FRP) wraps to confine steel reinforcement in a tension lap splice region anchored in high-strength reinforced-concrete beams. Seven beam specimens were constructed. The specimens were reinforced on the tension side with three deformed bars spliced at midspan. The splice region was devoid of any transverse reinforcement to allow a full examination of the FRP wrap contribution. Glass fiber reinforced polymer (GFRP) sheets were used. The main test variables were the GFRP configuration in the splice region (one strip, two strips, or a continuous strip), and the number of layers of the GFRP wraps placed around the splice region (one layer or two layers). All GFRP wraps were U-shaped. Except for the epoxy adhesive, no other anchorage mechanism or bonding procedure was applied for the GFRP wraps on the concrete beam. Following the application of the GFRP wraps, the beams were tested in positive bending. The test results demonstrated that GFRP wraps were effective in enhancing the bond strength and ductility of failure mode of the tension lap splices, especially when continuous strips were applied over the splice region.  相似文献   

10.
The objective of this paper is to study and compare the performance of concrete beams strengthened with carbon fiber sheets bonded with inorganic and organic resin matrices. The experimental study consisted of testing two groups of steel-reinforced concrete beams. The first group of beams was strengthened with carbon fiber sheets bonded with an organic matrix, and the second with carbon fiber sheets bonded with an inorganic matrix. The first group of beams was strengthened with 2, 3, and 4 layers of carbon fiber sheets, while the second group was strengthened with 2, 3, 4, and 5 layers of carbon fiber sheets. Strength, stiffness, ductility, deflection, failure pattern, and cracking of beams strengthened with the two systems were compared. Results showed that the inorganic matrix system is as effective in increasing strength and stiffness of reinforced concrete beams as the organic matrix. The failure mechanism of the inorganic system, however, seems more brittle. The failure of beams strengthened with inorganic matrix showed crack formation in the composite and a minimum buildup of strain along the interface of the composite and concrete. Analytical models were proposed to predict deflection and moment capacity of the strengthened beams. The experimental values compared well with those predicted by the analytical models.  相似文献   

11.
Deformation Patterns of Reinforced Foundation Sand at Failure   总被引:1,自引:0,他引:1  
While the stability of foundation soils has been written about extensively, the ultimate loads on reinforced soils is a subject studied to a much lesser degree. There is convincing experimental evidence in the literature that metal strips or layers of geosynthetic reinforcement can significantly increase the failure loads on foundation soils. Laboratory tests were performed to investigate the kinematics of the collapse of sand reinforced with a layer of flexible reinforcement. Sequential images of the deformation field under a model footing were digitally recorded. A correlation-based motion detection technique was used to arrive at an incremental displacement field under a strip footing model. Color-coded displacements are presented graphically. The mechanism retains some of the characteristic features of a classical bearing capacity pattern of failure, but the reinforcement modifies that mechanism to some extent. The strips of geotextile used as model reinforcement give rise to the formation of shear bands in a narrow layer adjacent to the geosynthetic. Reinforcement restrains the horizontal displacement of the soil and alters the collapse pattern. The mechanism of deformation identified in the tests will constitute a basis for limit analysis of reinforced foundation soils.  相似文献   

12.
Conclusions The aluminum-boron system was chosen for studying the mechanism and conditions of deformation of metallic composite materials reinforced with brittle fibers. It was established that, unlike that of an orthodox metallic material, the bending of a composite is accompanied by displacement of a neutral layer in the direction of compression. The causes and character of the displacement of this layer in the course of deformation were determined. The role of processing pads in bending was examined. A study was made of the fracture of fiber-reinforced composites on the attainment of critical values of strain.Translated from Poroshkovaya Metallurgiya, No. 11(239), pp. 80–85, November, 1982.  相似文献   

13.
T shaped stiffeners are the most commonly used structures in aerospace components. De-lamination/de-bond initiation followed by its growth is one of the most common reasons for failure in a fiber reinforced composite structure. It is caused by the interlaminar normal and shear stresses between different structural constituents. In a typical structural T-joint, the failure mechanism and location may differ based on the structural design parameters like fillet radius, thickness, layup sequence, filler stiffness, etc. In this study, finite element analysis has been performed using cohesive zone model (CZM) on a composite T-joint to simulate the pull out test conditions. A simplified plane strain model coupled with CZM is proposed, which can evaluate the failure initiation and progression accurately with lesser computational efforts. The final failure occurs at a displacement of 8.04 mm and the computed failure load is 2240 N. The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted regions of failure, failure displacements and failure load calculated are correlating reasonably well with the experiment.  相似文献   

14.
This paper explores the effects of fiber orientation and ply mix on load–deformation behavior and failure modes of fiber reinforced polymer (FRP) confined concrete by testing under uniaxial compression a designed array of plain concrete cylinders wrapped with different fabric orientation. Depending on the jacket confinement stiffness, either a strain hardening or a strain softening behavior was observed beyond the kink point where there was a sharp reduction in slope in the load–deformation curve. Kinking was seen to have a definable graphical relationship with the critical concrete lateral strain while the kink stress was found to upshift with increasing jacket stiffness. It is concluded that while hoop fiber wrapped concrete leads to brittle failures, angular fiber wrapped concrete tends to fail in a ductile manner, attributed to a fiber reorientation mechanism. Ply mix sequence plays an important role in the overall deformation and failure behavior. Existing models are found to be adequate in describing load–deformation behavior of angular fiber wrapped concrete as long as equivalent FRP properties in the hoop direction are used.  相似文献   

15.
The cyclic stress-strain characteristics of discontinuously reinforced metal-matrix composites are studied both experimentally and numerically. The model systems used for investigation are aluminum alloys reinforced with SiC particulates and whiskers. Finite element analyses of the fatigue deformation of the composite are performed within the context of axisymmetric unit cell formulations. Two constitutive relations are used to characterize the matrix of the composite: the fully dense Mises model of an isotropically hardening elastic-viscoplastic solid and the Gurson model of a progressively cavitating elastic-viscoplastic solid (to simulate ductile matrix failure by the nucleation and growth of voids). The brittle reinforcement phase is modeled as elastic, and the interface between the ductile matrix and the reinforcement is taken to be perfectly bonded. The analyses provide insights into the effects of reinforcement shape and concentration on (1) constrained matrix deformation under cyclic loading conditions, (2) cyclic hardening and saturation, (3) the onset and progression of plastic flow and cavitation within the matrix, and (4) cyclic ductility. The numerical predictions of flow strength, strain hardening, evolution of matrix field quantities, and ductility under cyclic loading conditions are compared with those predicted for monotonic tensile deformation and with experimental observations. formerly Visiting Scientist, Division of Engineering, Brown University  相似文献   

16.
纤维分散对C/C-SiC复合材料力学性能的影响   总被引:2,自引:0,他引:2  
利用温压-原位反应法制备短炭纤维增强C/C-SiC复合材料,研究纤维分散对复合材料力学性能的影响.结果表明: 利用分散短炭纤维制备的C/C-SiC复合材料,其抗弯强度和抗压强度分别达到56.6MPa和89.3MPa.该材料纤维之间孔隙少,纤维与基体接合界面多,弯曲时有纤维拔出,为假塑性断裂行为.压缩时无纤维拔出,为脆性断裂行为.最后,利用LI V C提出的束丝数学模型证明了纤维分散有利于提高C/C-SiC复合材料的力学性能.  相似文献   

17.
Many applications of the Ti alloy matrix composites (TMCs) reinforced with SiC fibers are expected to use the selective reinforcement concept in order to optimize the processing and increase the cost-effectiveness. In this work, unnotched fatigue behavior of a Ti-6Al-4V matrix selectively reinforced with SCS-6 SiC fibers has been examined. Experiments have been conducted on two different model panels. Results show that the fatigue life of the selectively reinforced composites is far inferior to that of the all-TMC panel. The fatigue life decreases with the decreasing effective fiber volume fraction. Suppression of multiple matrix cracking in the selectively reinforced panels was identified as the reason for their lack of fatigue resistance. Fatigue endurance limit as a function of the clad thickness was calculated using the modified Smith-Watson-Topper (SWT) parameter and the effective fiber volume fraction approach. The regime over which multiple matrix cracking occurs is identified using the bridging fiber fracture criterion. A fatigue failure map for the selectively reinforced TMCs is constructed on the basis of the observed damage mechanisms. Possible applications of such maps are discussed.  相似文献   

18.
This paper presents the results of a two-phase experimental program investigating the punching shear behavior of fiber reinforced polymer reinforced concrete (FRP RC) flat slabs with and without carbon fiber reinforced polymer (CFRP) shear reinforcement. In the first phase, problems of bond slip and crack localization were identified. Decreasing the flexural bar spacing in the second phase successfully eliminated those problems and resulted in punching shear failure of the slabs. However, CFRP shear reinforcement was found to be inefficient in enhancing significantly the slab capacity due to its brittleness. A model, which accurately predicts the punching shear capacity of FRP RC slabs without shear reinforcement, is proposed and verified. For slabs with FRP shear reinforcement, it is proposed that the concrete shear resistance is reduced, but a strain limit of 0.0045 is recommended as maximum strain for the reinforcement. Comparisons of the slab capacities with ACI 318-95, ACI 440-98, and BS 8110 punching shear code equations, modified to incorporate FRP reinforcement, show either overestimated or conservative results.  相似文献   

19.
The Monophase reinforced hybrid thermoplastic composites are the materials for the superior mechanical behavior. This article deals with the effect of single reinforcing phase (Fiber) in hybrid mode on the mechanical behavior of PA66/Teflon blend. Two hybrid material systems were selected: 10 wt% short glass fibers (SGF) and 10 wt% short carbon fibers reinforced 80 wt% PA66/20 wt% Teflon (PA66/PTFE) blend (GB) and 10 wt% SGF and 10 wt% short basalt fibers reinforced 80 wt% PA66/20 wt% Teflon (PA66/PTFE) blend(GB). These hybrid composite materials were prepared by melt mixing method by using twin screw extruder followed by injection molding. The experimentally determined mechanical properties were tensile behavior, flexural behavior and impact behavior. Experimental results revealed that addition of hybrid short fibers into the blend greatly enhanced the mechanical behavior of PA66/PTFE composites. Increase in tensile strength by 46 and 33%, flexural strength by 45 and 57% for GC and GB composites respectively were observed. The GC composites had the better impact strength than GB composites. The peak load obtained was 36 and 48% higher than that of neat blend for GC and GB composites respectively were observed. The strain rate of the hybrid composites deteriorated due to the hybrid effect. The synergistic effect between the fibers and the matrix blend improved the mechanical behavior. The hybrid effect increased the size of the voids and also the number of aggregates of the short fibers. This would weaken the reinforcement effect simultaneously building the strong bridge for the development of internal crack. Fractured surfaces were observed through Scanning Electron Microscopy photographs.  相似文献   

20.
A rational analysis of extensible sheet reinforcement subjected to an oblique end force has been presented that properly accounts for complex soil-reinforcement interaction and involves stress-deformation relationship implicitly. The results can be used for internal design of geosynthetic reinforced soil walls against pullout failure and tension failure. The pullout force and the end displacement at pullout for an extensible reinforcement are found to be almost the same as those for an inextensible reinforcement if the ratio of the reinforcement stiffness to the axial pullout capacity J* is greater than 15. With decrease in J* below 15, the maximum strain increases, the pullout failure becomes irrelevant, the tension failure dominates and the maximum allowable oblique force decreases. A minimum stiffness of about 25 times the axial pullout capacity is required to avoid the tension failure before the pullout provided the failure strain is 0.1. The predicted results have been calibrated against the finite-element analysis of pullout tests and detailed back analyses of published test data on model reinforced walls constructed with a wide range of extensible materials. The present analysis gives better predictions of the critical height against the pullout and the tension failure in model reinforced soil walls constructed with extensible reinforcements as compared to that of Rankine’s method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号