首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
采用磁控溅射先驱丝法和热等静压工艺制备SiCf/TC11复合材料,研究了SiCf/TC11复合材料室温和500℃拉伸性能及断裂机制。结果表明,SiCf/TC11复合材料室温和500℃抗拉强度分别为1 530 MPa和1 553 MPa,明显高于基体TC11钛合金,与TC11钛合金相比,抗拉强度分别提升了~57%和~133%,纤维增强效果显著。通过观察SiCf/TC11复合材料室温、500℃拉伸断口和纵剖面断裂特征,指出了室温和500℃拉伸断裂机制主要包括反应层多次断裂、纤维一次断裂、纤维多次断裂、纤维-基体界面脱粘、纤维拔出、W芯-SiC界面脱粘、基体断裂、包套断裂等,揭示了SiCf/TC11复合材料室温和500℃拉伸载荷下多组元失效断裂过程。  相似文献   

2.
采用原位反应和液态搅拌合成法制备混杂相(Al3Ti+SiCp)增强过芡晶铝基复合材料,研究了(Al3Ti+SiCp)/Al-14Si复合材料的微观组织和强化机理。结果表明:采用原位反应法生成的Al3Ti具有良好的细化晶粒效果;通过液态搅拌可以使得原位生成Al3Ti增强相粒子和初晶硅更加细化;由于SiCp的存在使得Al基体畸变,产生密集的位错,对过共晶铝合金的力学性能有着重要影响。  相似文献   

3.
通过箔-纤维-箔法制备了SiC纤维增强TB8复合材料,采用光学电子显微镜(OM)、扫描电镜(SEM)和电子探针(EPMA)对复合材料的微观组织进行表征与分析,研究了真空热压复合时压力、温度和时间工艺参数对SiC纤维增强TB8复合材料微观组织的影响规律。结果表明:压力对复合材料基体与基体以及纤维与基体的结合有着显著影响,而温度对纤维与基体界面反应层影响较大。通过热压工艺的优化,可以有效控制界面反应层厚度,获得组织优良的SiC f/TB8复合材料。  相似文献   

4.
SiC纤维增强钛基复合材料研究进展   总被引:2,自引:0,他引:2  
概述了作者研究组近年来在SiC纤维增强钛基复合材料研究领域开展的工作及取得的进展.采用具有自主知识产权的SiC纤维,研究了PVD先驱丝制备方法和真空热压/热等静压复合材料成形工艺,获得700℃拉伸强度>1500MPa的SiCf/Ti-6A1-4V复合材料,分别制备出长度>400mm和直径>200mm的钛基复合材料棒材和环形件.此外,分别采用粉末布与粉浆涂挂先驱丝两种低成本方法制备出钛基复合材料,确定了新的胶粘剂并优化了相关工艺参数.  相似文献   

5.
连续SiC纤维增强钛基复合材料横向强度分析   总被引:1,自引:0,他引:1  
连续SiC纤维增强钛基复合材料(SiCf/Ti)具有良好的综合性能,但其横向性能低于钛合金基体,为了准确地预测SiCf/Ti复合材料的横向强度,提出一种基于界面脱粘强度的计算模型。采用SiCf/Ti复合材料十字拉伸试件来测试复合材料的纤维/基体界面脱粘强度,并分析了热处理工艺对界面脱粘强度影响规律,以及不同纤维之间界面脱粘强度的差别。复合材料横向拉伸试件采用箔-纤维-箔方法制备,每个试件的纤维层数为10层,纤维百分数为30%左右。在不同温度条件下测试复合材料的横向拉伸强度,拉伸温度分别为室温、300,400,550℃,通过对比实验结果和模型预测结果,模型预测的结果与实验结果的误差不超过5%。  相似文献   

6.
采用热等静压法制备SiC颗粒增强铝基复合材料,研究其显微组织和力学性能,分析复合材料的断口形貌及断裂机制,测定了其热膨胀系数。结果表明:热等静压后,复合材料中的SiC颗粒会出现颗粒团聚,形成硬质的SiC骨架。对于20%SiC_p/6061Al(体积分数)复合材料,其抗拉强度能达到304 MPa,而20%SiC_p/2024Al(体积分数)的抗拉强度为276 MPa,两种复合材料的抗拉强度都达到或超过其他制备方法的水平。复合材料的断裂方式为基体的韧性断裂、SiC颗粒的解理断裂、SiC颗粒与基体的界面脱粘3种方式并存的混合断裂形式。对比复合材料热膨胀系数的实际测量值和Turner、Kerner模型理论值,Turner模型理论值更接近实测值。  相似文献   

7.
以SiC纤维、Ti箔、Ti_2AlNb箔为原材料,采用箔-纤维-箔方法,通过真空热压技术制备了SiCf/Ti/Ti_2AlNb叠层复合材料。利用扫描电子显微镜(SEM)、能谱分析仪(EDS)和X射线衍射仪(XRD)对复合材料相组成和微观组织进行了分析。结果表明,当真空热制造参数为920℃/40 MPa/30 min时,SiC纤维与韧性金属Ti实现良好冶金结合,界面反应产物主要为TiC,界面反应层厚度为0.8μm,C涂层厚度为1.3μm;韧性金属Ti层与金属间化合物Ti_2AlNb层通过Ti,Al,Nb 3种元素相互扩散方式形成固相扩散连接,界面平直,复合材料呈现出理想叠层结构。制备态的SiCf/Ti/Ti_2AlNb叠层复合材料主要由α-Ti,β-Ti,SiC,TiC,O相和B2相构成。在Ti与Ti_2AlNb固相扩散连接过程中,由于Al原子的扩散速率大于Nb原子,且Al是α稳定元素,Nb是β稳定元素,从而导致在Ti/Ti_2AlNb界面区域依次形成α+β双相组织和富B2相。在真空热压实验中,韧性金属Ti层与金属间化合物Ti_2AlNb层固相扩散连接过程依次为:物理接触/α+β双相区形成/富B2相区形成/富B2相区增厚。  相似文献   

8.
通过箔-纤维-箔法制备了SiC纤维增强TB8复合材料,采用光学电子显微镜(OM)、扫描电镜(SEM)和电子探针(EPMA)对复合材料的微观组织进行表征与分析,研究了真空热压复合时压力、温度和时间等工艺参数对SiC纤维增强TB8复合材料微观组织的影响规律。结果表明:压力显著地影响着复合材料基体与基体以及纤维与基体的结合,而温度对纤维基体界面反应情况影响较大。通过热压工艺的优化,可以有效控制界面反应层厚度,获得组织优良的SiCf/ TB8复合材料。  相似文献   

9.
通过微波烧结法制备石墨烯(GNPs)表面镀Cu增强钛基(Ti6Al4V)复合材料,探讨石墨烯表面镀Cu后对钛基复合材料显微组织和力学性能的影响。结果表明:石墨烯表面成功镀覆一层较均匀分布的Cu颗粒;石墨烯与基体Ti界面反应严重,容易生成粒径为2~5μm的TiC,石墨烯表面镀Cu后,界面反应产生的TiC含量更多,同时生成了Ti_2Cu相;相比于单纯外加石墨烯,石墨烯表面镀Cu后,提高了复合材料的力学性能,其相对密度、显微硬度、抗压强度分别达到95.48%、468 HV_(0.1)、1 406 MPa;室温磨损机制由基体(Ti6Al4V)的磨粒磨损转变为GNPs-Cu/Ti6Al4V复合材料的黏着磨损。  相似文献   

10.
连续SiC纤维增强钛基复合材料(SiCf/Ti)具有良好的综合性能,但其横向性能低于钛合金基体。为了准确地预测SiCf/Ti复合材料的横向强度,北京航空制造工程研究所赵冰等人提出一种基于界面脱粘强度的计算模型。采用SiCf/Ti复合材料十字拉伸试件来测试复合材料的纤维/基体界面脱粘强度,并分析了热处理时间对界面脱粘强度影响规律,以及不同纤维之间界面脱粘强度的差别。  相似文献   

11.
本发明是一种铝基复合材料的制备方法,它利用现有铝合金常规熔炼设备,通过将搅拌铸造法和原位反应法相结合,使Al_2(SO4)_3分解反应生成Al_2O_3弥散增强铝基复合材料。该方法使外加增强体与基体界面  相似文献   

12.
采用粉末冶金法制备了体积分数为35%的SiC_p/6061Al基复合材料,研究了复合材料的显微组织和基体与增强体颗粒界面对复合材料力学性能的影响。结果表明:SiC颗粒在基体中分布均匀,基体与增强体之间的界面结合情况较好,复合材料致密度高,抗拉强度较高。  相似文献   

13.
综述了SiC颗粒增强Al基复合材料的主要制备方法,总结出最常用的几种,包括:粉末冶金法、搅拌铸造法、浸渗法。重点论述了粉末冶金法的研究现状;归纳了SiCp/Al界面结构类型和界面反应,提出了控制有害界面反应的有效措施;分析了SiCp/Al复合材料主要的热处理强化机制,结合众多研究内容,提出了Al基复合材料微观组织和性能的影响因素以及SiC颗粒增强Al基复合材料研究进展中存在的问题。  相似文献   

14.
通过微波烧结制备TiC/6061铝基复合材料,采用TEM、EDS、XRD分析该复合材料结合界面的结构、元素分布和相组成;从热力学角度研究新相的形成机理。结果表明:结合界面存在厚度约为100 nm的扩散型和反应型2种中间层,其与基体和增强相的邻接整洁、边界连续、结合紧密。扩散型界面,具有(111)Al//(240)TiC,]110[Al//[001]TiC的晶体学位向关系并形成半共格界面;反应型界面,由TiAl和微纳米级的Al4W相组成。界面TiAl相的热力学形成机理为Al和Ti元素通过扩散的方式首先生成TiAl3,之后随Ti元素的进一步扩散占据TiAl3中Al的位置,最终形成TiAl。  相似文献   

15.
采用粉末冶金法制备SiC颗粒增强工业纯Al基复合材料,研究混料时间和挤压对复合材料显微组织和力学性能的影响。研究表明:机械混粉过程存在最佳的混料时间,混料时间为16 h时SiC颗粒分布均匀,复合材料的密度高、力学性能好。挤压可以改善复合材料的界面结合强度、减少孔洞的数量,从而提高材料的致密度和力学性能。烧结态复合材料的断裂机制以基体的脆性断裂以及增强相与基体的界面脱粘为主。挤压态复合材料的断裂以基体的韧性断裂以及SiC颗粒的脆性断裂为主,伴随着少量的基体与SiC颗粒的界面脱粘。  相似文献   

16.
采用冷压烧结-热挤压复合工艺制备SiC_p/Al-Si复合材料,用JEM-2100型高分辨电子透射电镜(HRTEM)分析增强体与基体的界面显微组织。结果表明,粉末冶金工艺制备的SiC_p/Al-Si复合材料经热处理后,增强体与基体结合界面清晰平滑,结合良好,性能优良。颗粒增强体SiC和Al基体直接结合,(1103)SiC//(010)Al,错配度δ为0.020 4,衬底相SiC为Al的有效结晶核心,界面易形成半共格界面,有利于提高材料界面的结合强度。合金相Al4Cu9与Al基体界面清晰,完全不共格,经热处理后,合金相Al4Cu9转变为Al2Cu相在Al基体上均匀分布,并形成半共格界面。  相似文献   

17.
SiC纤维增强钛基复合材料(SiCf/Ti)具有优良的力学性能,是航空领域重要的高温结构材料;高质量的先驱丝(带金属涂层的SiC纤维)是研制复合材料的关键,而这主要受溅射工艺的影响。本文采用磁控溅射法沉积TC17合金涂层,研究了沉积过程中溅射偏压对涂层生长情况的影响规律,通过X射线衍射(XRD)、俄歇电子(AES)、扫描电镜(SEM)、表面轮廓仪和纳米压痕仪分别对涂层的晶体结构、成分、微观形貌、应力、弹性模量及硬度进行了分析。结果表明溅射偏压对合金涂层应力影响显著,随着负偏压的增大,涂层应力由张应力向压应力转变;由于压应力有利于涂层与纤维的结合,因此在高偏压下涂层与纤维的结合情况较好且生长致密;而偏压对涂层组成物相和弹性模量的影响较小;涂层硬度随负偏压的增大总体呈现增大的趋势。  相似文献   

18.
分别采用纳米钛粉(Ti)和氧化亚镍粉(NiO)为活性填料,聚碳硅烷(polycarbosilane,PCS)为碳化硅(SiC)陶瓷先驱体,以正己烷作为溶剂制备浆料,然后通过3D直写成形和高温裂解制备SiC陶瓷基复合材料,对浆料的流变性能以及SiC陶瓷基复合材料的物相和微观形貌进行表征,研究活性填料纳米Ti粉和纳米NiO粉对3D-SiC陶瓷基复合材料的物相与微观形貌的影响。结果表明,浆料的黏度与PCS的质量分数成正比,具有剪切变稀现象,w(PCS)为75%的浆料具有稳定的打印性能。纳米Ti粉可有效降低成形坯体热处理过程中的质量损失率和线收缩率。随m(Ti)/m(PCS)的值从0增加到1.0,1 450℃高温裂解后陶瓷的质量损失率和线收缩率分别由18.29%和24.38%降低至14.05%和12.13%,所得陶瓷包含Ti C和SiC两相,相比于Ti粉,NiO可作为SiC的表面修饰催化剂,并通过气-液-固(V-L-S)生长机制使SiC陶瓷表面原位生长SiC晶须团簇。  相似文献   

19.
通过箔-纤维-箔法制备了SiC纤维增强TB8复合材料,利用光学电子显微镜(OM)、扫描电镜(SEM)和力学性能试验机对SiC纤维增强TB8复合材料层合板的微观组织、断口形貌与力学性能进行表征与分析,研究了铺层方式对SiC纤维增强TB8复合材料层合板力学性能的影响。结果表明:880℃/50 MPa/2 h的热压工艺下,SiC纤维增强TB8复合材料层合板复合效果良好,纤维排布均匀并与设计方向基本一致。通过对单层SiC纤维布铺设角度、铺层顺序的设计可实现对SiC纤维增强TB8复合材料不同方向力学性能的调整与改进。单向SiC纤维增强TB8复合材料的纵向性能最佳,室温抗拉强度达1362.20 MPa,■层合板在部分牺牲复合材料纵向强度的同时,提升了其横向强度。当钛基复合材料多向受力时可考虑采用■层合板;当钛基复合材料构件受力状态确定时,可采用■或根据实际情况确定的其他角度层合板。  相似文献   

20.
通过Ti-SiC反应体系,选择粒径为45μm的基体TC4,5μm的增强相SiC(质量分数为5%和10%),经过低能球磨混粉后,微波烧结原位合成颗粒增强钛基复合材料。采用X射线衍射仪(XRD)、扫描电镜(SEM)和能谱仪(EDS)对制备的钛基复合材料进行组织结构分析,并对钛基复合材料的致密度、显微硬度、压缩强度、抗拉强度、耐磨性和抗氧化性进行测试研究。结果表明,钛基复合材料主要由增强相TiC,Ti_5Si_3及基体Ti_3种物相组成。TiC呈颗粒状,有明显的棱角,而Ti_5Si_3呈熔融状颗粒,但是颗粒没有明显的棱角,增强相呈准连续网状分布,随着SiC含量的增加,网状结构不清晰,部分增强相团聚在一起。复合材料的相对密度、显微硬度和压缩强度随SiC含量的增加而增加,分别达到98.76%,HV729和2058MPa,但是复合材料的室温拉伸强度随SiC含量增加而降低。引入增强相后,复合材料的抗氧化性和耐磨性均高于基体,且耐磨性和抗氧化性随SiC含量增加而增加,其室温磨损机制主要为粘着磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号