首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni(与2-[2-(6-甲基苯并噻唑偶氮)]-5-二乙氨基苯甲酸(6-Me-BTAEB)形成的络合物在pH6·5的KH2PO4-K2HPO4缓冲溶液中有一较灵敏的极谱波,其峰电位Ep为-796mV(vs·SCE),镍质量浓度在4·5~64μg/L范围内与峰电流ip″有良好的线性关系,检出限为1·4μg/L。通过对极谱波性质的研究表明,该波为络合物吸附波,其电极过程不可逆,电子转移数为2。此外还试验了多种离子对峰电流Ip″的影响。所拟方法已用于铝合金中镍的测定。  相似文献   

2.
钴Ⅱ在六次甲基四胺-2-(5-碘-2-吡啶偶氮)-5-二甲氨基苯胺-NH2OH·HCl体系中有一灵敏的极谱波,其峰电位VP为 - 1.22 V (vs.SCE),钴Ⅱ的质量浓度在 3 ~ 40 μg/L 范围内与峰电流 IP′有良好的线性关系(r = 0.999 7),方法检出限为0.47 μg/L。研究了该体系的极谱波性质,结果表明该波为络合物吸附波,其电极过程为不可逆过程,电子转移数为2。所拟方法用于镍矿样中微量钴的测定,测定结果的相对标准偏差为1.8 %,加标回收率为 110%。  相似文献   

3.
合成了新显色剂2-(5-硝基-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(缩写为:5-NO2-4-Me-PADMA), 并研究了其与钴的显色反应。结果表明, 在pH 4.0~7.0 的HAc-NaAc缓冲溶液中, 钴与5-NO2-4-Me-PADMA反应形成紫红色络合物, 其最大吸收峰位于568 nm处;钴络合物形成后非常稳定, 当以无机酸酸化, 由于质子化作用, 可转化成另一种具有较高吸收特性绿蓝色的稳定双质子化型体, 其吸收峰红移至620 nm, 灵敏度提高3倍。以1.8 mol/L H2SO4作测量介质, 钴的浓度在0~1.0 μg/mL范围内符合比尔定律, 表观摩尔吸光系数为6.02×104 L·mol-1·cm-1。方法应用于矿样中微量钴的测定, 结果与火焰原子吸收光谱法测定结果相一致, 相对标准偏差(n=6)小于2%。  相似文献   

4.
霍燕燕 《冶金分析》2016,36(11):76-80
以试剂2-(5-溴-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-Br-4-CH3-PADMA)为显色剂,建立了双波长叠加分光光度法同时测定铑和钯的新方法。结果表明:钯与5-Br-4-CH3-PADMA在0.9~4.2 mol/L 高氯酸介质中,形成稳定络合物;而铑与5-Br-4-CH3-PADMA在pH值为4.2~5.0的近中性介质中形成稳定络合物,络合物一旦形成则很稳定,向其中加入强酸酸化,该配合物不仅不分解,反而吸收峰红移,吸光度增大。研究还发现,铑、钯与5-Br-4-CH3-PADMA形成的络合物,均呈现两个强弱不等的吸收峰,强峰分别位于605 nm和606 nm,弱峰分别位于558 nm和563 nm。在605 nm和562 nm处,其各自的强弱峰对应的吸光度之和与溶液中铑、钯的质量浓度具有良好的线性关系。铑、钯质量浓度分别在0~0.55 μg/mL 和0~1.04 μg/mL范围内符合比尔定律;利用双波长叠加的分光光度法测得铑、钯的表观摩尔吸光系数分别为εRh=2.64×105 L·mol-1·cm-1εPd= 1.40 ×105 L·mol-1·cm-1,铑络合物的组成为n(Rh)∶n(5-Br-4-CH3-PADMA) =1∶2,钯络合物的组成为n(Pd)∶n(5-Br-4-CH3-PADMA)=1∶1。方法用于实际样品催化剂中铑和钯的同时测定,结果的相对标准偏差(RSD,n=6)分别为1.4%和4.9%,测定值与原子吸收光谱法测定值相一致。  相似文献   

5.
合成了新试剂5-(5-磺酸-2-吡啶偶氮)-2,4-二氨基甲苯(5-SO3H-PADAT),用红外光谱和核磁共振波谱对其结构进行了表征,研究了该试剂与钯(Ⅱ)的显色反应并建立了双波长叠加光度法测定钯(Ⅱ)的方法。结果表明:在0.06~1.8 mol/L H2SO4介质中,该试剂与钯(Ⅱ)形成稳定的络合物,该络合物有两个吸收峰,分别位于580 nm和543 nm处;钯(Ⅱ)质量浓度在0.04~1.2 μg/mL之间符合比尔定律,表观摩尔吸光系数为1.49×105 L·mol-1·cm-1。方法用于钯分子筛和钯炭催化剂中钯的测定,所得结果与西北有色金属研究院西安凯立化工有限公司提供的参考值相符,相对标准偏差(RSD,n=6)分别为1.3%和2.6%,回收率分别为94%和108%。  相似文献   

6.
霍燕燕  韩权  杨晓慧  周梅 《冶金分析》2014,34(10):70-72
探讨了以试剂2-(5-溴-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(简称5-Br-4-CH3-PADMA)为显色剂,应用双波长叠加分光光度法测定钯的方法。试验表明,在1.08 ~ 3.06 mol/L H2SO4中,试剂与钯形成稳定的1∶1蓝紫色络合物,该络合物呈现两个强弱不等的吸收峰,分别位于606 nm和564 nm,两个峰的吸光度之和与钯浓度线性相关,钯浓度在0 ~ 1.04 μg/mL范围内符合比尔定律,表观摩尔吸光系数 ε = 1.40 × 105 L·mol-1·cm-1。大量常见金属离子不干扰测定。方法用于含钯分子筛和钯-炭催化剂样品中钯的测定,结果与参考值相符,相对标准偏差(RSD,n=6)为1.8%和2.8%。  相似文献   

7.
2-(5-溴-2-吡啶偶氮)-5-二乙氨基苯酚(5-Br-PADAP)光度法应用于矿石中铅的测定时,Cu、Zn、Fe、Ni、Bi、Mn、Cd、Co、V、Ti、Nb和Ta等多种元素的干扰不容忽视。针对这一问题,实验提出了采用KHSO4沉淀法对样品进行前处理,5-Br-PADAP光度法测定矿石中Pb的方法。实验表明,采用盐酸-硝酸体系溶解矿石后,加入10 mL 200 g/L KHSO4溶液,放置20 min后即可见样品中的铅沉淀完全从而与上述离子分离;将沉淀过滤后,采用pH 5.6的HAc-NaAc缓冲溶液溶解沉淀,可使K2SO4·PbSO4复盐沉淀溶解,从而与Ba、W、Sr和Ca等元素分离。在样品溶液中依次加入0.4 mL pH 9.3 H3BO3-KCl-NaOH缓冲溶液、0.4 mL饱和KI溶液、0.4 mL 10%(V∶V)Trion X-100溶液、1.0 mL 0.03 g/L 5-Br-PADAP乙醇溶液,于1 cm比色皿中,在波长558 nm处进行测定,Pb质量浓度在0.02~2 μg/mL范围内符合比尔定律,线性回归方程的相关系数为0.998。方法检出限为0.02 μg/mL。采用实验方法分别对铅矿、锌矿、铅锌矿标准物质中的Pb进行分析,测得结果与认定值基本一致,相对标准偏差(RSD,n=11)为2.3%~5.8%。  相似文献   

8.
以试剂5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯( 5-I-PADAT )做显色剂,建立了双波长叠加分光光度法同时测定钴和钯的新方法。研究发现,在0.6~2.4 mol/L HClO4介质中,钯(Ⅱ)与5-I-PADAT反应形成稳定络合物,而在此高酸度下,钴(Ⅱ)则完全不能显色;在pH 3.6~10的缓冲介质中,钴(Ⅱ)与5-I-PADAT反应形成稳定络合物,钴络合物形成后以强酸酸化,提高酸度至0.6~3.0 mol/L HClO4,可转变为另一种具有较高吸收特性质子化型体。研究还发现,钴(Ⅱ)、钯(Ⅱ)与5-I-PADAT形成的络合物,均呈现两个吸收峰,且吸收峰位置十分接近,强峰分别位于580和583 nm,弱峰分别位于532和543 nm。基于钴(Ⅱ)、钯(Ⅱ)与5-I-PADAT显色酸度的差异以及吸光度的加合性特点,采用双波长叠加,建立了分光光度法同时测定钴和钯的新方法。钴、钯质量浓度分别在0~0.4 μg/mL和0~1.0 μg/mL范围内服从比尔定律,表观摩尔吸光系数分别为2.17×105 L·mol-1·cm-1和1.10×105 L·mol-1·cm-1,灵敏度较单波长分别提高1.75和1.53 倍。方法应用于催化剂和矿样中钴和钯的同时测定,测定值与推荐值相一致,相对标准偏差(RSD,n=6)分别为0.50%~2.3%(钴)和1.0%~1.4%(钯)。  相似文献   

9.
研究了新试剂2-(5-溴-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-Br-4-CH3-PADMA)与镍的显色反应,建立了分光光度法测定镍的新方法。结果表明,在 pH 值为 4.2~6.0 的 HAc-NaAc 缓冲溶液中,在阴离子表面活性剂十二烷基硫酸钠(SDS)存在下,镍与 5-Br-4-CH3-PADMA 形成稳定的组成比为1∶2的紫色配合物,其最大吸收波长位于 567 nm 处。镍的质量浓度在0~0.40 μg/mL范围内遵守比尔定律,校准曲线的线性相关系数r=0.999 2,表观摩尔吸光系数ε=1.22×105 L·mol-1·cm-1。以硫脲和氟化铵做掩蔽剂可消除Cu2+、Fe3+ 和Pd2+等离子的干扰。方法用于铝合金中微量镍的测定,结果的相对标准偏差(RSD, n=6)为0.58%~0.98%,并与火焰原子吸收光谱法测定值一致。  相似文献   

10.
利用分光光度法研究了试剂 5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯(5-I-PADAT) 与铱(Ⅲ) 的显色反应。结果表明,在HAc-NaAc缓冲介质(pH 5.5~6.8)中,铱(Ⅲ)与 5-I-PADAT 形成1∶2的稳定络合物,以强酸酸化,可转化为另一种具有较高吸收特性的质子化型体,灵敏度显著提高。在1.2 mol/L H2SO4 溶液中,络合物呈现分别位于542 nm和584 nm的两个吸收峰,表观摩尔吸光系数为ε584=5.9×104 L·mol-1·cm-1。铱含量在0.03~1.0 μg/mL范围内符合比尔定律。方法应用于催化剂中铱的测定,测定值与参考值相符,相对标准偏差为0.52%。  相似文献   

11.
探讨了2-(5-碘-2-吡啶偶氮)-5-二甲氨基苯胺(5-I-PADMA)与钯(Ⅱ)的显色反应。实验表明,在0.6 mol/L高氯酸介质中,5-I-PADMA与钯(Ⅱ) 反应形成摩尔比为1∶1的蓝色稳定络合物,该络合物最大吸收峰位于613 nm处。钯(Ⅱ)含量在0~0.6 μg/mL范围内符合比尔定律,线性回归方程为△A=0.828 4 ρ(μg/mL)- 0.001 6,相关系数r=0.999 9,表观摩尔吸光系数为8.82 × 104 L·mol-1·cm-1。方法应用于钯分子筛和矿样中钯的测定,结果与原子吸收光谱法一致,相对标准偏差(n=6)为1.2%~1.4%。  相似文献   

12.
研究了新合成显色剂2-(5-硝基-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-NO2-4-CH3-PADMA)与钯(Ⅱ)的显色反应。结果表明,在0.6~2.4 mol/L H2SO4介质中,5-NO2-4-CH3-PADMA与钯(Ⅱ)形成1∶1的绿蓝色络合物,其最大吸收峰位于621 nm,表观摩尔吸光系数为6.05×104 L·mol-1·cm-1,钯的质量浓度在0~3.2 μg/mL符合比尔定律。由于显色反应直接在强酸性介质中进行,其他金属离子几乎不显色,因此钯的测定具有很高的选择性,常见金属离子及100倍量的铑、25倍量铂、20倍量的钌、10倍量的银、7.5倍量的锇和5倍量的铱等贵金属离子不干扰钯的测定。所拟定的测定方法简便,快速,应用于催化剂和矿样中微量钯的测定,结果满意。  相似文献   

13.
对2-(5-氰基-2-吡啶偶氮)-5-二甲氨基苯胺(5-CN-PADMA)与钴的显色反应进行了探讨,并将其应用于实际样品中钴的测定。实验表明,在pH 4.5的HAc-NaAc缓冲溶液中,钴与5-CN-PADMA形成稳定的络合物,其最大吸收峰位于543nm,经1.2mol/L高氯酸酸化后,该络合物转化成一种较稳定的蓝色络合物,并呈现两个吸收峰,分别位于570nm和609nm。在优化的实验条件下,钴质量浓度在0.04~0.60μg/mL内与其在570mm和609nm处的吸光度加和呈线性关系,线性相关系数为0.9998,表观摩尔吸光系数ε为1.99×105 L· mol-1·cm-1。将该体系应用于镍矿和钯钴炭催化剂中微量钴的测定,结果与火焰原子吸收光谱法一致,相对标准偏差(RSD,n=6)为0.50%~0.60%。  相似文献   

14.
合成了一种新显色剂4-(4-氯苯重氮基)氨基-4′-氯偶氮苯(简称CDACAB) 并研究了其与镍(Ⅱ)的显色反应。结果表明,在Triton X-100存在下和pH 10.0的Na2B4O7 -NaOH缓冲介质中,该试剂与Ni (Ⅱ)形成稳定的红色络合物,最大吸收波长位于538 nm,表观摩尔吸光系数ε=1.58×105 L ● mol -1 ● cm-1,镍(Ⅱ)的质量浓度在0~0.7 μg/mL范围内遵守比耳定律。通过用氟化钠和硫脲掩蔽Al3+、Fe3+、Cu2+、Pd2+等干扰离子后,方法可直接测定铝合金中微量镍。铝合金标准样品中镍的测定值与认定值相符,相对标准偏差为1.6% ~ 2.5%。  相似文献   

15.
利用He-Ne激光器,观测了2-(5-硝基-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-NO3-4-Me-PADMA)与Pd(II)形成络合物的激光热透镜效应。结果表明,在1.8mol/L H2SO4介质中,并在50%丙酮(体积分数,其作用是增强热透镜信号强度)存在的情况下,5-NO3-Me-PADMA与Pd(II)反应形成蓝绿色络合物,其最大吸收峰位于623nm处,与所用He-Ne激光器输出波长632.8nm接近,据此建立了激光热透镜光谱法(TLS)测定痕量钯的新方法。实验表明,热透镜信号强度与Pd(II)质量浓度在5~250ng/mL范围内符合线性关系,相关系数为0.9989,方法检出限为1.5ng/mL。该法不仅灵敏度高,而且选择性佳,800倍量的Fe3+、Co2+和Cu2+,500倍量的Ni2+等常见金属离子以及25倍的Pt(IV),10倍量的Au(III)、Rh(III)、Ru(III)和Os(VIII),5倍量的Ir(III)等贵金属离子不干扰钯的测定。将实验方法应用于矿石中痕量钯的测定,测得结果与火焰原子吸收光谱法(FAAS)基本一致,相对标准偏差(RSD,n=6)为0.57%~1.3%。  相似文献   

16.
以5-溴-3-碘-2-氨基吡啶和2,4-二氨基甲苯为主要原料,设计合成新试剂5-(5-溴-3-碘-2-吡啶偶氮)-2,4-二氨基甲苯(5-Br-3-I-PADAT),用红外光谱和核磁共振波谱对其结构进行了表征,并研究了试剂与铑(III)的反应。结果表明,在pH 4.8的HAc-NaAc缓冲体系中,铑(III)与5-Br-3-I-PADAT可形成棕红色的络合物,该络合物在536nm和576nm处有两个吸收峰,铑(III)的质量浓度在0.04~0.70μg/mL时符合比尔定律,方法检出限为0.010μg/mL,表观摩尔吸光系数为2.18×105 L·mol-1·cm-1。方法用于铑炭催化剂中铑的测定,测定值和参考值相一致,结果的相对标准偏差(RSD,n=6)为0.88%,回收率分别为98%和96%。  相似文献   

17.
杜芳艳  朱星泽 《冶金分析》2009,29(12):69-72
镍(Ⅱ)与偶氮氯瞵Ⅰ形成摩尔比为1∶2的络合物在0.4 mol/L氨水-醋酸铵(pH8.2)缓冲溶液中有一灵敏的极谱波,其峰电位在-0.63 V(vs.SCE),加入硫脲对峰高有增敏作用,镍质量浓度在0.002~2.00 mg/L范围内与峰电流Ip″有良好的线性关系(r=0.998 9),方法检出限为0.001 mg/L。通过对极谱波性质的研究表明,该波为络合物吸附波,其电极过程不可逆,电子转移数为2。所拟方法用于铝合金中微量镍(Ⅱ)的测定,相对标准偏差小于5%,回收率为96%~104%。  相似文献   

18.
在pH 4.0~7.0的HAc-NaAc缓冲介质中,并在50%乙醇存在下,Co(Ⅱ)与新试剂2-(5-硝基-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-NO3-4-CH3-PADMA)反应形成紫红色配合物;钴配合物形成后,当以强酸酸化,提高酸度至1.8 mol/L H2SO4介质,可转变为另一种具有较高吸收特性的绿蓝色质子化形体,最大吸收波长位于622 nm处,与所用He-Ne激光器的输出激光波长(632.8 nm)能较好匹配,据此建立了激光热透镜光谱法测定痕量钴的新方法。钴质量浓度在3~100 ng/mL范围内与分析信号呈良好的线性关系,检出限为1.0 ng/mL。常见金属离子不干扰钴的测定,特别是与钴伴生的铁、镍和铜等元素有较高的允许量,150倍量的Fe3+和Ni2+、5倍量的Cu2+等不干扰钴的测定。实验方法应用于矿石中痕量钴的测定,结果与推荐值(原子吸收光谱法测定结果)一致,相对标准偏差在0.46%~1.46%之间。  相似文献   

19.
研究了钌(II)与5-(5-氰基-2-吡啶偶氮)-2,4-二氨基甲苯(5-CN-PADAT)的反应,并将方法应用于钌炭催化、钌分子筛中微量钌的测定。实验表明,盐酸羟胺存在时,在pH 4.0~5.5 HAc-NaAc缓冲溶液中,钌(II)与试剂形成稳定的深红色络合物,最大吸收波长位于520nm处;使用0.3mol/L HCl酸化后,络合物转变为另一种具有较高吸收特性的双质子化型体,并呈现两个吸收峰,分别位于538nm和611nm。在优化的实验条件下,钌(II)质量浓度在0.1~0.9μg/mL范围内与其在538nm和611nm处的吸光度加和呈线性关系,相关系数为0.9997。表观摩尔吸光系数为1.08×105 L·mol-1·cm-1。方法应用于钌炭催化剂、钌分子筛中微量钌的测定,结果与参考值相符,结果的相对标准偏差(RSD,n=6)为1.3%~3.4%,加标回收率为96.5%~101.0%。  相似文献   

20.
合成了新试剂1-偶氮苯-3-(5-溴-2-吡啶)-三氮烯(ABBPTA),并研究了它与镍的显色反应。在pH 10.5的Na2B4O7-NaOH缓冲溶液中,Triton X-100表面活性剂存在下,该显色剂与镍生成摩尔比为4∶1的红色络合物,络合物的最大吸收峰位于540 nm,表观摩尔吸光系数为2.11×105L.mol-1.cm-1。在25 mL溶液中,镍量在0~12μg范围内符合比尔定律,相关系数r=0.999 7。该体系有良好的选择性,大多数常见离子有较高的允许量,用拟定方法测定铝合金中微量镍,回收率为98.2%~102.8%,相对标准偏差为2.1%~2.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号