首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用热模拟机对TC17钛合金进行等温压缩试验,变形温度范围为770~950℃,应变速率范围为1×10~(-2)~1×10~1 s~(-1),研究具有片状初始α相组织的TC17合金在α+β两相区和β单相区热变形行为。结果表明,TC17合金有两种不同的流变软化现象,在α+β两相区,高应变速率以及低应变速率下变形时均出现持续软化行为;在β单相区,流变应力达到峰值后迅速降低到一个稳定值,在高应变速率下表现出明显的不连续屈服现象,随后出现振荡,而在低应变速率下真应变对流变应力的影响很小,表现出稳定的流变行为;用Arrhenius正弦方程构建流变应力与变形温度、应变速率的关系,发现α+β两相区的形变激活能随应变的增加从670.1 kJ·mol~(-1)下降到370.1 kJ·mol~(-1),在β单相区,随着应变的增加,形变激活能从301.4 kJ·mol~(-1)下降到239.3 kJ·mol~(-1);TC17合金在α+β两相区的变形机制都是动态再结晶(球化),在β单相区变形时,高应变速率下的主要变形机制是动态回复,而低应变速率下为β相动态再结晶。  相似文献   

2.
粉末冶金Ti-1.5Fe-2.25Mo钛合金的热变形本构方程   总被引:1,自引:0,他引:1  
采用元素粉末法制备Ti-1.5Fe-2.25Mo合金,在Thermec-Master Z热模拟机上对该合金进行等温压缩试验。实验温度为650~900℃,变形速率0.01~10 s-1。以经典的双曲正弦形式的模型为基础,对热模拟真应力-真应变曲线进行计算和分析,建立粉末冶金Ti-1.5Fe-2.25Mo合金高温本构方程。研究表明,β相区等温压缩时,合金流变应力快速达到峰值然后进入稳态流变变形阶段,应力指数n=4.24,应变激活能Q=378.01 kJ/mol。而在α+β两相区等温压缩时,合金在较低应变速率(≤0.1 s-1)下,曲线经过应力峰后出现不同程度的加工软化现象;在应变速率≥1 s-1条件下,呈现出1种稳态变形,热变形的应力指数n=6.77,应变激活能Q=257.73 kJ/mol。所得结果为粉末冶金钛合金锻造成形提供了一定的理论依据。  相似文献   

3.
对BT25钛合金在温度为950~1 100 ℃,应变速率为0.001~10 s-1条件下的高温变形行为进行了研究,分析了热力学参数对流变应力和微观组织的影响,并以Arrhenius方程为基础,构建了本构方程,最后进行了验证.结果表明:BT25合金在相同温度和应变速率下变形,变形量越大,动态再结晶越充分并细化了晶粒.相同变形量,变形温度越低,应变速率越高,动态再结晶晶粒尺寸越细小;流变应力随应变速率的增加而增加,随变形温度的升高而减小;BT25合金在α+β两相区(950~1 010 ℃)Q=763.51 kJ/mol,β相区(1 040~1 100 ℃)Q=231.36 kJ/mol.   相似文献   

4.
《钛工业进展》2018,35(5):8-14
采用Gleeble-3800热模拟压缩试验机研究了高氧TC4钛合金在温度为990~1 030℃、应变速率为0. 01~1. 0 s~(-1)、变形量为60%时的变形行为及微观组织特征,并构建了该合金的本构方程。结果表明,高氧TC4钛合金在β单相区变形时随着应变速率的增加和变形温度的降低,其流动应力显著增加,该合金在β相区的变形激活能为141 kJ/mol。在990~1 030℃加热温度下,原始β晶粒尺寸在250~255μm范围内,晶粒尺寸对温度不敏感。随着应变速率的增大,原始β晶粒沿着垂直于压缩轴方向被拉长,在被拉长的原始β晶界上可观察到β再结晶晶粒。  相似文献   

5.
用Gleeble-1500型热模拟机研究TC4-DT钛合金在850~1 100℃、应变速率0.001~10 s-1、变形量70%条件下的高温压缩热变形行为,分析了该合金的流变应力行为以及显微组织演变规律,建立了该合金的本构关系模型以及热加工图。研究结果表明,TC4-DT钛合金在两相区和β相区的热变形激活能分别为544.03 k J·mol-1和264.32 k J·mol-1,分别大于纯α相和纯β相的自扩散激活能,表明TC4-DT钛合金热变形由高温扩散以外的过程控制。在两相区热变形时,原始组织发生了不同程度的球化,且变形温度越低球化效果越好。在β相区热变形时,低应变速率下(0.001~0.1 s-1)主要发生动态再结晶,而高应变速率(1~10 s-1)下主要发生动态回复,动态再结晶行为受到抑制。TC4-DT钛合金的失稳区主要分布在低温高应变速率区域,变形温度主要在850~940℃,应变速率主要在0.1~10 s-1,功率耗散率η值小于28%。  相似文献   

6.
片层组织TC17钛合金高温变形行为研究   总被引:1,自引:0,他引:1  
通过热压缩试验研究了具有初始片层组织的TC17钛合金在780~860℃和应变速率0.001~10 s-1范围内的热变形行为和组织演变。分析了该合金在两相区变形的应力-应变曲线特征,其流变应力本构关系可以用双曲正弦方程和Zener-Hollomon参数描述,得到TC17合金在两相区变形的平均激活能为488.86 kJ.mol-1。显微组织分析发现:TC17合金在两相区变形时组织演变的主要特征是片层组织球化;热变形参数严重影响片层组织球化过程的进行,加大变形量、降低应变速率以及提高变形温度可以提高片状组织的动态球化程度。  相似文献   

7.
武敏  廉晓洁  曾莉  李国平 《钢铁》2013,48(6):54-60
为研究热变形参数对铸态超级双相不锈钢S32750热变形行为和显微组织的影响,运用Gleeble-3800热模拟试验机对S32750进行不同温度和应变速率下的高温拉伸和压缩试验。结果表明,S32750在1 000~1 200℃范围内具有较好的热塑性。在变形温度较低、应变速率较低时,流变曲线表现出不同于单相不锈钢的"类屈服平台"特征;当应变速率较高或变形温度较高、应变速率较低时,流变曲线为典型的动态再结晶特征。微观组织演变显示,铁素体和奥氏体两相都发生动态再结晶,且铁素体的再结晶先于奥氏体。降低应变速率,提高变形温度,可促进动态再结晶发生。基于热变形动力学模型建立了本构方程,表观应力指数为3.99,热变形激活能为393.75kJ/mol。S32750的高温软化机制与Zener-Hollomon(Z)参数有关,随Z参数增加,热变形峰值应力增加。  相似文献   

8.
Fe16Mn0.6C TWIP钢流变应力和临界动态再结晶行为   总被引:1,自引:1,他引:0  
 利用Thermecmastor-Z热模拟实验机,得到了Fe16Mn0.6C TWIP钢在变形温度850~1150℃,应变速率0.03~30s-1条件下热压缩变形的真应力应变曲线。进而研究了变形温度、应变速率对Fe16Mn0.6C流变应力和临界动态再结晶行为的影响规律。结果表明,850~1150℃范围内Fe16Mn0.6C热变形的峰值应力随温度的升高而降低,随着应变速率的增大而升高;且在应变速率为0.03 s-1和30 s-1出现明显的应力峰值,材料发生了动态再结晶。最后采用线性回归方法计算出Fe16Mn0.6C的高温变形流变应力本构方程,得出热变形激活能为469kJ/mol;并通过应变硬化速率与流变应力曲线求出了该钢种动态再结晶临界条件与Z参数之间的关系。  相似文献   

9.
Hastelloy C-276镍基合金的热压缩变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟试验机研究了Hastelloy C-276镍基合金在0.01~10 s-1、1000~1250℃、应变量0.7条件下的高温恒温压缩变形行为,对热压缩后的组织进行了金相显微分析。结果表明:C-276合金热变形流变应力随着应变速率的增大和变形温度的降低而增大。热变形过程中发生了动态再结晶,当温度T≥1200℃时,发生了完全动态再结晶,T<1200℃时,发生部分动态再结晶。热变形流变应力可用Zener-Hollomon参数来描述,根据修正后的流变应力曲线建立了Hastelloy C-276合金峰值应力下的高温变形本构方程,热变形材料常数为:激活能Q=446.51 kJ·mol-1,α=0.0037346,n=4.42851,A=1.11×1016。  相似文献   

10.
对均匀化炉冷态7085铝合金进行高温压缩实验,研究该合金在变形温度为350~450℃、变形速率为0.001~0.1 s 1和应变量为0~0.6条件下的流变应力及软化行为。结果表明:流变应力在变形初期随着应变的增加而迅速增大,出现峰值后逐渐软化进入稳态流变;随着变形温度的升高和应变速率的降低,峰值流变应力降低。采用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金的流变行为。分析和建立了应变量与本构方程参数(激活能、应力指数和结构因子)的关系,研究发现本构方程参数随应变量的增加而减少。合金的流变行为差异与动态回复再结晶和第二相粒子相关。  相似文献   

11.
通过热模拟压缩实验,研究了变形温度、应变速率对Ti-B25合金高温变形时流动应力和峰值流动应力的影响,并结合组织演变规律揭示了其高温塑性流动软化机理.结果表明:流动应力和峰值流动应力均随变形温度的下降以及应变速率的增大而增大.应变速率为10.0 s-1时,随着变形温度的升高,流动软化程度减小,并且α+β两相区的软化程度...  相似文献   

12.
罗远  庞玉华  孙琦  刘峰  王海  刘东 《钢铁研究学报》2020,32(11):977-983
摘要:利用 Gleeble-3500 热模拟实验机完成了07MnNiMoDR钢热等温平面应变压缩实验,获得了温度 900~1100℃、应变速率 0.01~1s-1、变形率45%等条件的高温流变行为,其中温度和应变速率对流变应力的影响明显。基于对Arrhenius 方程和 Zener Hollomon 参数的解析,获得了热变形激活能Q,确定了峰值应力本构模型;通过分析应力应变与位错的关系,获得了硬化率及Z参数等与应力之间的内在关联性,建立了加工硬化 动态回复过程的流变应力模型;基于动态再结晶理论,采用Avrami模型计算了动态再结晶体积分数,获得Z参数计算方法,建立了动态再结晶过程的流变应力模型。利用所建立的本构模型完成了预测及对比分析,相关系数r为0.99,所建立的本构关系模型精度很高。  相似文献   

13.
基于Z参数金属热变形分段流变应力模型研究   总被引:1,自引:0,他引:1  
考虑峰值应力后的稳态应力的软化机制,构建了包括动态回复和动态再结晶过程的基于Z参数的金属热成形分段流变应力数学模型,在Gleeble-3500热力模拟试验机上采用圆柱试样对金属材料进行了进行恒温和恒速热压缩变形试验,研究其在高温塑性变形过程中流变应力的变化规律,确定其形变表观激活能Q和应变硬化指数n,得到了峰值应力,峰值应变,稳态应力与lnZ的线性关系以及动态回复参数和动态再结晶动力学的数学模型,分段流变应力模型的模拟结果与试验结果吻合较好.  相似文献   

14.
康荻娜  庞玉华  罗远  孙琦  林鹏程  刘东 《钢铁》2020,55(9):104-110
 为了建立可以满足计算精度的F45MnVS钢高温塑性变形本构关系模型,利用Gleeble-3500试验机完成了热模拟等温压缩试验,获得了变形温度为800~1 000 ℃、应变速率为0.01~10 s-1、变形量为0~70%时的金属流变行为。结果表明,应力随应变的变化具有明显动态再结晶特征,应力随变形温度的降低、应变速率的增加而增大;基于对Arrhenius方程和Zener-Hollomon参数的解析,获得了热变形激活能Q,建立了峰值应力本构模型;基于应力-位错关系和动态再结晶动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,用于描述不同变形温度和应变速率时应力与应变之间的关系;采用所建模型完成了不同变形条件的应力应变预测,与试验结果的对比分析表明,相关系数为0.997,吻合度高。  相似文献   

15.
The true stress–strain curve of Cu–Fe16Mn0.6C twinning induced plasticity (TWIP) steel was studied with a compression test on Thermecmastor‐Z thermal simulator at a temperature range of 850–1150°C and strain rate range of 0.03–30 s?1. The influence of deformation temperature and strain rate on high‐temperature flow stress and critical recrystallization behavior of the TWIP steel was investigated. It is concluded that the peak flow stress of Cu–Fe16Mn0.6C under high‐temperature deformation decreases as the temperature increases but increases with the strain rate. Meanwhile at strain rate of 0.03 and 30 s?1 obvious peak stresses are observed which demonstrates the dynamic recrystallization. The constitutive equation of Cu–Fe16Mn0.6C under high temperature deformation is calculated by linear regression method. The activation energy is 505 kJ mol?1. The relationship between critical strain of dynamic revrystallization and Zener–Hollomon parameter is determined by the curve between strain‐hardening rate and flow stress.  相似文献   

16.
无取向电工钢的高温塑性变形流动应力   总被引:1,自引:0,他引:1  
 以指导无取向电工钢热轧工艺为目的,采用Gleeble 1500热模拟试验机进行高温等温压缩,在应变速率为0.01~10s-1和变形温度500~1200℃条件下,对试样进行试验研究。结果表明:随着变形温度的升高,在回复与再结晶过程中发生α-Fe向γ-Fe相的?洌贾挛忍鞅溆αΤ氏帧耙斐!北浠2捎肁rrhenius关系模型,模型参数能很好的与试验结果相吻合。利用模型分别计算得500~800℃时,应力水平因子α=0.0390MPa-1,应力指数n=7.93,结构因子A=1.9×1018 s-1,热变形激活能Q=334.8kJ/mol;1050~1200℃时,应力水平因子α=0.1258MPa-1,应力指数n=5.29,结构因子A=1.0×1028 s-1,热变形激活能Q=769.9kJ/mol。  相似文献   

17.
刘海英  骆春民  张龙 《天津冶金》2012,(5):14-18,47
利用Gleeble-3800热模拟试验机对低合金高强度结构钢Q345E在1150~800℃之间的奥氏体动态再结晶及动态相变行为进行研究。确定了试验钢Q345E奥氏体动态再结晶的临界应变条件;研究了变形温度、应变速率等变形条件对试验钢奥氏体动态再结晶的影响,通过高温热力学模拟试验得到了Q345E钢在不同变形条件下的流动应力曲线,得出了动态再结晶激活能为467.767kJ/mol,通过对实验数据的拟合回归分析,建立了动态再结晶热变形模型和峰值应力、峰值应变与Z因子的关系,为控制该钢的组织和性能提供了基本依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号