首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the application of importance sampling method to estimating the first passage probability of single-degree-of-freedom elastoplastic systems subjected to white noise excitations. The importance sampling density is constructed using a conventional choice as a weighted sum of Gaussian distributions centered among design points. It is well known that the design points, or equivalently the critical excitations in the function space, are difficult to obtain for nonlinear hysteretic systems. An efficient method has been developed recently for finding the critical excitations, on which this paper is based. Characteristics of the critical excitation for elastoplastic systems are explored and the efficiency of the resulting importance sampling strategy is critically assessed. It is found that some efficiency is gained by importance sampling over direct Monte Carlo method but to a lesser extent compared to its linear-elastic counterparts. The cause of this drop in efficiency will be investigated. The study calls for revisiting a basic assumption of importance sampling densities constructed using design points, where they are expected to generate samples lying frequently in the failure region, but in reality their capability should not be taken for granted. A companion paper investigates the approximation of the critical excitation that allows its simple determination.  相似文献   

2.
Hardware, software, and analysis of transient response of sources and receivers are presented for a piezoelectric bender element system designed to measure shear wave velocities in noisy environments. Signal-to-noise ratio is improved by signal stacking, wherein data vectors from many pulses are summed. A new fast-stacking algorithm enables signal quality to be improved much more rapidly than conventional stacking. Conventional stacking is accomplished by repeatedly sending an excitation pulse to a source, waiting for the signal and secondary reflections to pass the receiver and then introducing a subsequent excitation pulse. Using conventional stacking, it is important to wait for the signal and secondary reflections to die out before exciting subsequent pulses. In the new fast-stacking algorithm, a varied interval between consecutive pulses is used so that high quality signals can be obtained even if consecutive pulses are excited in rapid succession. Transient behavior of soil–bender interaction was characterized using closed-form analytical solutions of single-degree-of-freedom oscillators, numerical solutions using a beam-on-springs method, and measurements from an array of bender elements in a sand model. The time delay caused by soil–bender interaction was calculated to be half of the natural period of the bender element, and this theoretical time delay was supported by experimental data. This system makes it feasible to rapidly collect accurate shear wave velocity information so that transient changes in shear wave velocity can be monitored even if background noise is large.  相似文献   

3.
Adiabatic pulses, although useful in generating uniform spin nutation in the presence of inhomogeneous B1 fields, are limited for NMR imaging applications due to the lack of slice-selective excitation capability. Selective excitation techniques using gradient modulation have been introduced; however, present methods require either a minimum of two excitations or eight adiabatic segments. Here, a scheme is presented that allows single-shot, arbitrary flip-angle, and slice-selective excitation with only four adiabatic half-passage segments. The technique is demonstrated via computer simulation and experimental tests on a phantom. Furthermore, issues associated with the implementation of these gradient-modulated adiabatic pulses are discussed.  相似文献   

4.
Effects of Near-Fault Ground Shaking on Sliding Systems   总被引:3,自引:0,他引:3  
A numerical study is presented for a rigid block supported through a frictional contact surface on a horizontal or an inclined plane, and subjected to horizontal or slope-parallel excitation. The latter is described with idealized pulses and near-fault seismic records strongly influenced by forward-directivity or fling-step effects (from Northridge, Kobe, Kocaeli, Chi-Chi, Aegion). In addition to the well known dependence of the resulting block slippage on variables such as the peak base velocity, the peak base acceleration, and the critical acceleration ratio, our study has consistently and repeatedly revealed a profound sensitivity of both maximum and residual slippage: (1) on the sequence and even the details of the pulses contained in the excitation and (2) on the direction (+ or ?) in which the shaking of the inclined plane is imposed. By contrast, the slippage is not affected to any measurable degree by even the strongest vertical components of the accelerograms. Moreover, the slippage from a specific record may often be poorly correlated with its Arias intensity. These findings may contradict some of the prevailing beliefs that emanate from statistical correlation studies. The upper-bound sliding displacements from near-fault excitations may substantially exceed the values obtained from some of the currently available design charts.  相似文献   

5.
Stochastic characteristics of the surge response of a nonlinear single-degree-of-freedom moored structure subjected to random wave excitations are examined in this paper. Sources of nonlinearity of the system include a complex geometric configuration and wave-induced quadratic drag. A Morison-type model with an independent-flow-field formulation and a three-term-polynomial approximation of the nonlinear restoring force is employed for its proven excellent prediction capability for the experimental results investigated. Wave excitations considered in this study include nearly periodic waves, which take into account the presence of tank noise, noisy periodic waves that have predominant periodic components with designed additive random perturbations, and narrow-band random waves. A unified wave excitation model is used to describe all the wave conditions. A modulating factor governing the degree of randomness in the wave excitations is introduced. The corresponding Fokker–Planck formulation is applied and numerically solved for the response probability density functions (PDFs). Experimental results and simulations are compared in detail via the PDFs in phase space. The PDFs portray coexisting multiple response attractors and indicate their relative strengths, and experimental response behaviors, including transitions and interactions, are accordingly interpreted from the ensemble perspective. Using time-averaged probability density functions as an invariant measure, probability distributions of large excursions in experimental and simulated responses to various random wave excitations are demonstrated and compared. Asymptotic long-term behaviors of the experimental responses are then inferred.  相似文献   

6.
Auto-parametric vibration of a cable-stayed-beam structure under a random excitation is first studied numerically with emphasis on cable local vibration. A simplified 3-degree-of-freedom model that includes linear as well as nonlinear coupling terms between the cable and beam is employed. The general equivalent linearization method is applied to obtain the random response of the nonlinear system. Results show that when the vertical random excitation to the beam exceeds a critical value, the horizontal motions of the cable and beam are excited due to the auto-parametric nonlinear coupling. In this motion, the structural response possesses a nonstationary characteristic, even though the loading is a stationary random process. The Lyaponov exponent technique is applied to investigate the stability property of the auto-parametric vibration, under harmonic, random, and combined excitations. Effects of the natural frequency ratio and damping on the stability are also investigated.  相似文献   

7.
Passive damping in shock and vibration isolation systems reduces the deformation of the isolation system but can increase the acceleration sustained by the isolated object. Semiactive (i.e., controllable) damping systems offer a solution to the problem of increased vibration transmissibility at high frequencies. Semiactive damping is especially relevant to protecting acceleration-sensitive components to the effects of large impulsive earthquakes. In this paper, we compare three semiactive control policies, i.e., pseudonegative-stiffness control, continuous pseudoskyhook-damping control, and bang-bang pseudoskyhook-damping control, in terms of their effectiveness in addressing the deficiencies of passive isolation damping. In order to establish a performance goal for these suboptimal semiactive control rules, we present a method for true optimization of the response of dynamically excited, semiactively controlled structures subjected to constraints imposed by the dynamics of a particular semiactive device. The optimization procedure involves solving Euler–Lagrange equations. The closed-loop dynamics of structures with semiactive control systems are nonlinear due to the parametric nature of the control actions. These nonlinearities preclude an analytical evaluation of Laplace transforms. In this paper, frequency response functions for semiactively controlled structural systems are compiled from the computed time history responses to sinusoidal and pulse-like base excitations. For control devices with no saturation forces, the closed-loop frequency response functions are independent of the excitation amplitude. We make use of this homogeneity of the solution of semiactive control systems and present results in dimensionless form.  相似文献   

8.
This paper proposes a combined feedback–feedforward control algorithm for reducing structural response of buildings to seismic excitations. The controller contains both feedback and feedforward components. The feedback component is assumed to be the same as that found from traditional linear quadratic regulator design. The feedforward component is obtained by estimating the external excitation as a series of step functions at each time increment. This feedforward gain varies with the duration of the step function used for estimation and converges as the time duration increases. Thus, a finite number of precalculated gains can be used to represent the potential feedforward gain profile. At any instant in time, the excitation is measured and by using the past measurements, the most effective feedforward gain for the recorded excitation values can be selected from the set of precalculated gains. This value is used as the feedforward gain for the current time step. Numerical examples are presented to show the effectiveness of this adaptive control scheme. The effects of varying the control objectives, the updating time for the feedforward gain, and the number and location of actuators are studied.  相似文献   

9.
The ultimate goal of this work was the development of a system capable of estimating the low flow velocities in the microvasculature. Estimation of low velocity flow within these vessels is challenging due to the small signal levels and the effect of cardiac and respiratory motion. Realignment of the signal from a single line-of-sight to remove physiological tissue motion is a critical part of the process of small-vessel flow mapping, and our methods for this alignment are considered in this paper. Each method involves the correlation of pulses acquired from the same line-of-sight. The first method involves the correlation of adjacent pulses (nearest-neighbor), the second involves a single reference line and the third involves averaging the correlation over a set of reference lines. We find that a nearest-neighbor strategy is suboptimal, and that strategies involving a global reference line are superior. A bound on the variance of estimates of the location of the correlation peak is presented. This bound allows us to consider our results in comparison with an absolute limit. Finally, a new algorithm allowing for alignment between lines-of-sight is described, and initial results are presented. Such an algorithm does, in fact, reduce jitter, correct for tissue motion and enables us to better visualize vessel continuity. We find that vessels as small as 40 microm can be mapped in two dimensions using a 50-MHz transducer.  相似文献   

10.
An innovative design for a semiactive variable stiffness (SAVS) device is presented in this paper. This beamlike device is capable of altering its stiffness in a smooth manner between minimum and maximum levels by using the variations of moment of inertia of an area as it rotates around a normal axis passing through its centroid. Analytical expressions for the stiffness of the proposed device have been derived. As an application of the SAVS device in engineering, a semiactive tuned vibration absorber (SATVA) is developed that is capable of real-time retuning and operates effectively in broadband frequency excitations. A single-degree-of-freedom (SDOF) system coupled with the SATVA is considered. The excitation force is assumed to arise from a rotating unbalance whose frequency varies with a constant acceleration and then reaches a steady-state operating condition. The absorber stiffness is varied to tune the absorber’s natural frequency to the forcing frequency in real time. The effectiveness of SATVA is evaluated by comparing the system’s responses with those of the system with passive vibration absorber. The results show the salient features of the proposed SATVA in transient response reduction compared with the traditional passive vibration absorber.  相似文献   

11.
A direct time domain formulation for the analysis of unbounded media and foundations is developed that treats dynamic excitations and ground motion in a uniform manner. The method uses the boundary element method with higher order B-Spline fundamental solutions to compute the characteristic responses of the surface of the elastodynamic domain. Subsequently, time histories of the system response to general excitations are computed by a mere superposition scheme that accommodates in a uniform manner arbitrary time histories of external loads and/or ground motion. The characteristic responses are computed in the form of time dependent flexibility matrices of the medium that are sparse due to the finite duration of the B-Spline excitation signal and the characteristics of the wave propagation. The duration of the B-Spline impulse response is limited to only a few time steps. Consequently, significant savings in computing time and storage requirements are achieved. Furthermore, the characteristic responses do not depend on the type or wave form of the actual external excitations and the presence of rigid foundations. This is a significant advantage when the response of a system to excitations of long duration is to be computed. In addition, the proposed approach significantly reduces the size of the problems under consideration and yet fully considers the effects of the free field. The significance of nonrelaxed boundary conditions and correct representation of the free field is established. The method is demonstrated and validated through applications pertaining to the analysis of foundations and inclusions subjected to transient loads and seismic excitations.  相似文献   

12.
The equation of motion of linear dynamic systems with viscoelastic memory is usually expressed in a integrodifferential form, and its numerical solution is computationally heavy. In two recent papers, the writers suggested that the system memory be accounted for through the introduction of a number of additional internal variables. Following this approach, the motion of the system is governed by a set of first-order, linear differential equations, whose solution is quite easy. In this paper, the approach is extended to single-degree-of-freedom systems subjected to random, nonstationary excitation. The equations governing the time variation of the second-order statistics are derived, and an effective step-by-step solution procedure is proposed. Numerical example shows the accuracy of the procedure for white and nonwhite excitations.  相似文献   

13.
1. The spike activity of 155 cells of the dorsal geniculate body of rats was recorded under the influence of flash and the combination of flash with a tone. For test animals the tone has an emotional relevance (ERT), because they had been trained to learn a conditioned emotional reaction with the tone as conditioned stimulus. Controls had been sham trained, i.e. the tone was never reinforced and therefore without emotional relevance (EIT). 2. In the controls there was no difference in the quantity of facilitatory and inhibitory responses to the tone, whereas under ERT there were more often facilitations than inhibitions. 3. The tone changed the reaction to flash. This variation depends on the emotional relevance of the acoustic stimulus. The ERT evoked a stronger increase in the number of excitations than the EIT. The number of inhibitions decreased equally under both conditions. Also, the ERT changed the strength of the flash response more often than the EIT did. An increasing trend of excitation was found especially in primary positive cells, an increasing trend of inhibition especially in primary negative ones. The time course of responses shows these differences to occur in the primary positive cells essentially later than 200 mse cafter the stimulus, in the primary negative cells, however, within this interval.  相似文献   

14.
This study examines the requirements for nerve excitation near a spinal fusion implant during magnetic resonance imaging. The implant is the Spinal Fusion SpF device manufactured by Electro Biology Inc. The electric field induced within the biological medium was calculated using a three-dimensional finite difference model (described in a separate paper by Beuchler et al. from the University of Utah). Magnetic thresholds were obtained for excitation of myelinated nerve fibers that are near the implant. Minimum (rheobase) thresholds were determined for long duration dB/dt pulses, as well as strength-duration time constants (from which thresholds at other durations could be determined) for various geometries between the implant and a myelinated nerve fiber. The lowest thresholds occur when a large (20-microm diameter) fiber is situated near the bare tip of a wire from the implant, and a long duration (2 ms) stimulus is provided for which dB/dt is constant and monophasic. Magnetic thresholds for shorter durations of dB/dt are higher in accordance with a strength-duration law. In a magnetic field having a time derivative of 10 T/s that is uniform over the torso, nerve excitation is possible under worst-case conditions only for nerve fibers that are within 0.14 mm of the bare wire tip of the implant. With 20 T/s, excitation is possible only within 1 mm of the wire tip.  相似文献   

15.
The excited states of bacteriochlorophyll (BChl) a were studied by pump-probe transient absorption spectroscopy in reaction center core (RCC), Fenna-Matthews-Olson (FMO) and FMO-RCC complexes of the green sulfur bacterium Prosthecochloris aestuarii. Excitation at 790 or 835 nm resulted in rapid equilibration of the energy between the BChl a molecules of the RCC complex: within 1 ps, most of the excitations had relaxed to the lowest energy level (835 nm), as a result of strong interactions between the BChls. Excitation of chlorophyll a 670 resulted in energy transfer to BChl a with a time constant of 1.2 ps, followed by thermal equilibration. Independent of the wavelength of excitation, the decay at 835 nm could be fitted with a time constant of about 25 ps, comparable to the 30 ps measured earlier with membrane fragments, which is ascribed to trapping in the reaction centers. Similar results were obtained with the FMO-RCC complex upon excitation at 835 or 670 nm, but the results upon 790 nm excitation were quite different. Again an equilibrium was rapidly reached, but now most of the excitations remained within the FMO complex, with a maximum bleaching at 813 nm, the same as observed in the isolated FMO. Even after 100 ps there was no bleaching at 835 nm and no evidence for charge separation. We conclude that there is no equilibration of the energy between the FMO and the RCC complex and that the efficiency of energy transfer from FMO to the reaction center core is low.  相似文献   

16.
Much of the reported research on the dynamic analysis of pile foundations assumes linear behavior of soil that may not be valid for strong excitations. In this paper, material nonlinearity of the soil caused by plasticity and work hardening is considered in the dynamic analysis of pile foundations. An advanced plasticity based soil model, HiSS, is incorporated in a finite element technique. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are carried out for free-field response and pile head response of end-bearing single piles. Both harmonic and transient excitations are considered in the analyses. Effects of frequency of excitation and stiffness of soil are investigated. It was found that the nonlinearity of soil has significant effects on the pile response for lower and moderate frequencies of excitations (a0<0.6) while at higher frequencies its effects are not as significant.  相似文献   

17.
Long-term potentiation (LTP) of synaptic transmission induced by high-frequency stimulation (HFS) is considered to be a model for learning processes; however, standard HFS protocols consisting of long trains of HFS are very different from the patterns of spike firing in freely behaving animals. We have investigated the ability of brief bursts of HFS triggered at different phases of background theta rhythm to mimic more natural activity patterns. We show that a single burst of five pulses at 200 Hz given on the positive phase of tail pinch-triggered theta rhythm reliably induced LTP in the stratum radiatum of the hippocampus of urethane-anesthetized rats. Three of these bursts saturated LTP, and 10 bursts occluded the induction of LTP by long trains of HFS. Burst stimulation on the negative phase or at zero phase of theta did not induce LTP or long-term depression. In addition, stimulation with 10 bursts on the negative phase of theta reversed previously established LTP. The results show that the phase of sensory-evoked theta rhythm powerfully regulates the ability of brief HFS bursts to elicit either LTP or depotentiation of synaptic transmission. Furthermore, because complex spike activity of approximately five pulses on the positive phase of theta rhythm can be observed in freely moving rats, LTP induced by the present theta-triggered stimulation protocol might model putative synaptic plastic changes during learning more closely than standard HFS-induced LTP.  相似文献   

18.
19.
Multi-photon transitions with two simultaneously interacting IR laser fields lead to final excited states with frequencies nnu = n1nu1 + n2nu2, with n the total number of photons absorbed and (n, n1, n2) = (2, 1, 1), (3, 2, 1), (4, 1, 3), etc. The nature of the actual transition is determined by shift measurements, where the lasers are frequency-tuned by deltanui in opposite directions keeping the sum frequency, nnu, resonant with the molecular transition. This technique opens a new spectral range for multi-photon transitions and a unique identification of the observed features. For n1 and n2 both positive the excitation will lead to a "normal" up-up multi-photon transition. Many three- and four-photon transitions in the nu3 vibrational ladder of SF6 could be resolved with a resolution of 1 MHz, as well as four new two-photon transitions. As long as n1 + n2 >/= 0, one of the two ni may be negative resulting in an, e.g., up-down excitation pathway with its particular selection rules. The up-down excitations are demonstrated both for one- and two-photon transitions using the frequency shift technique. The different possible excitation schemes which meet the resonance condition for these transitions lead to interference effects and local couplings to highly excited states. Changes in resonance frequency for a one-photon transition (n = 1), due to these effects, are demonstrated. Evidently, the radiative coupling of participating levels to high-lying or quasi-continuum states may drastically change for different deltanui leading both to ac Stark shift and transition probability variations.  相似文献   

20.
Recent trends towards developing increasingly taller and irregularly-shaped buildings imply that these complex structures are potentially more responsive to wind excitation. Making accurate predictions of wind loads and their effects on such structures is therefore a necessary step in the design synthesis process. This paper presents a framework for dynamic analysis of the wind-induced lateral-torsional response of tall buildings with three-dimensional (3D) mode shapes. The cross correlation reflecting the statistical coupling among modal responses under spatiotemporally varying dynamic wind excitations has been investigated in detail. The effects of intermodal correlations on the lateral-torsional response of tall buildings with 3D mode shapes and closely spaced natural frequencies are elucidated and a more accurate method for quantifying intermodal cross correlations is analytically developed. Utilizing the wind tunnel derived synchronous multipressure measurements, a full-scale 60-story asymmetric building of mixed steel and concrete construction is used to illustrate the proposed framework for the coupled dynamic analysis and highlight the intermodal correlation of modal responses on the accurate prediction of coupled building acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号