首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper presents the results of a laboratory study of the structure of flow in a diversion structure with a vertical angled wedge-wire fish screen. This screen had a 10×25?mm mesh and was tested at three angles of 10.4, 17.5, and 26.8°, to the direction of the approaching flow, for two mean velocities of 0.5 and 0.8?m/s, with a depth of flow of about 0.75?m. In this water and fish diversion (channel or) structure, it was found that the depth of flow at any section is approximately constant with a drop at the screen on the side of the canal and decreased towards the bypass located at the downstream end. The distribution of the velocity component u in the direction of the approaching flow as well as the perpendicular component w and the resultant velocity V was uniform in the vertical direction. The depth averaged mean velocity for different verticals at any section in the diversion structure increased with the longitudinal distance x and was correlated with the relative width, bs/b (in the diversion structure) for all five experiments. Correlations have been found for the depth averaged transport velocity and the impinging velocity on the screen in terms of the approach velocity U. A general relation has also been developed for the attack angle of the flow on the screen. The downstream part of the screen carried more flow into the canal compared to the upstream part as a result of the uniform mesh size used in this study. The results of this hydraulic study should be useful, particularly for freshwater adult fish, in designing screens in irrigation canals and for micro-hydro sites that use diversion canals.  相似文献   

2.
The study is aimed at investigating the mean flow and turbulence characteristics in scour geometry developed near a circular cylinder of length 10cm placed over the sand bed transverse to the flow. The obstacle placed on a sand bed, on the way of a unidirectional flow, develops a crescent-shaped scour mark on the bed. The scour is caused by generation of vortex developed on the upstream side of the obstacle. Sand grains eroded by this vortex, are deposited on the downstream side of the obstacle as wakes. The turbulent flow field within the scour mark was measured in a laboratory flume using an Acoustic Doppler Velocimeter (ADV). The scour marks named as current crescents preserved in geological record are traditionally used as indicators of palaeocurrent direction. The distribution of mean velocity components, turbulent intensities and Reynolds stresses at different positions of the mark are presented. The experimental evidence also shows that the geometric characteristics of the scour mark (width) depend primarily on the cylinder aspect ratio, cylinder Reynolds number and sediment Froude number.  相似文献   

3.
An acoustic Doppler velocimeter was used to characterize turbulence in two gravel bed rivers. Data were collected in unobstructed flow and compared to recent investigations. Additional data collected in the wake of emergent boulders indicate that mean flow velocity, turbulent kinetic energy, gradients in the streamwise velocity, and Reynolds stress downstream from large rocks deviate from unobstructed flow results, but similar turbulence patterns are found behind each boulder. Results of this study are discussed with regard to natural channel design and fish habitat.  相似文献   

4.
This paper provides results of an experimental study of turbulent flow near trashrack models that are comprised of an array of three rectangular bars. The bar thickness, bar depth, and center-to-center spacing were maintained constant. The flow characteristics were studied by aligning the bars with the approach flow and conducting measurements at three different approach freestream velocities. Subsequently, the freestream velocity was kept constant and detailed measurements were conducted for four different bar inclinations relative to the approach flow. For each test condition, a high-resolution particle image velocimetry (PIV) technique was used to conduct detailed velocity measurements in streamwise-spanwise planes at middepth of flow. From these measurements, isocontours and profiles of the mean velocities, turbulence intensities, Reynolds shear stress, and production term in the transport equation for the turbulent kinetic energy were obtained to study the flow characteristics around and downstream of the aligned and inclined bars. Flow characteristics near hydroelectric station trashracks are important for efficient turbine operation and reduction of fish entrainment.  相似文献   

5.
In this paper, three-dimensional turbulent flow field around a complex bridge pier placed on a rough fixed bed is experimentally investigated. The complex pier foundation consists of a column, a pile cap, and a 2×4 pile group. All of the elements are exposed to the approaching flow. An acoustic-Doppler velocimeter was used to measure instantaneously the three components of the velocities at different horizontal and vertical planes. Profiles and contours of time-averaged velocity components, turbulent intensity components, turbulent kinetic energy, and Reynolds stresses, as well as velocity vectors are presented and discussed at different vertical and horizontal planes. The approaching boundary layer at the upstream of the pile cap separated in two vertical directions and induced an upward flow toward the column and a contracted downward flow below the pile cap and toward the piles. The contracted upward flow on the pile cap interacts with downflow in the front of the column and deflects toward the side of the pier, which in return produces a strong downflow along the side of the pile cap. The flow at the rear of the pile cap is very complex. The strong downward flow at the downstream and near the top of the pile cap in interaction with the reverse flow behind the column and upward flow near the bed produce two vortices close to the upper and lower corners of the pile cap with opposite direction of rotation. On the other hand, the back-flow from the wake of the pile cap is forced into the top region resulting in a secondary recirculation at the wake of the column. The contracted flow below the pile cap and toward the piles, a strong downflow along the sides of the pile cap at the upstream region, and a vortex flow behind the pile cap and an amplification of turbulence intensity along the sides of the pile cap at the downstream region are the main features of the flow responsible for the entrainment of bed sediments.  相似文献   

6.
To test the ability of acoustic Doppler current profilers (ADCPs) to measure turbulence, profiles measured with two pulse-to-pulse coherent ADCPs in a laboratory flume were compared to profiles measured with an acoustic Doppler velocimeter, and time series measured in the acoustic beam of the ADCPs were examined. A four-beam ADCP was used at a downstream station, while a three-beam ADCP was used at a downstream station and an upstream station. At the downstream station, where the turbulence intensity was low, both ADCPs reproduced the mean velocity profile well away from the flume boundaries; errors near the boundaries were due to transducer ringing, flow disturbance, and sidelobe interference. At the upstream station, where the turbulence intensity was higher, errors in the mean velocity were large. The four-beam ADCP measured the Reynolds stress profile accurately away from the bottom boundary, and these measurements can be used to estimate shear velocity. Estimates of Reynolds stress with a three-beam ADCP and turbulent kinetic energy with both ADCPs cannot be computed without further assumptions, and they are affected by flow inhomogeneity. Neither ADCP measured integral time scales to within 60%.  相似文献   

7.
The three-dimensional turbulent flow field around a spur dike in a plane fixed-bed laboratory open channel was studied experimentally using a microacoustic Doppler velocimeter. Mean and turbulence characteristics in all three spatial directions were evaluated at upstream and downstream cross sections near the dike. Results showed that the primary flow separated in both lateral and vertical directions. Two counter-rotating flow circulations, consisting of the lateral and vertical velocity components, originated at the dike section. Downstream of the dike, the circulation in the flow-separation zone is stronger than the one in the contracted primary flow zone. The maximum bed-shear stresses estimated using Reynolds stresses is about three times as large as the mean bed-shear stress of incoming flow.  相似文献   

8.
Characteristics of Horseshoe Vortex in Developing Scour Holes at Piers   总被引:3,自引:0,他引:3  
The outcome of an experimental study on the turbulent horseshoe vortex flow within the developing (intermediate stages and equilibrium) scour holes at cylindrical piers measured by an acoustic Doppler velocimeter (ADV) are presented. Since the primary objective was to analyze the evolution of the turbulent flow characteristics of a horseshoe vortex within a developing scour hole, the flow zone downstream of the pier was beyond the scope of the investigation. Experiments were conducted for the approaching flow having undisturbed flow depth ( = 0.25?m) greater than twice the pier diameter and the depth-averaged approaching flow velocity ( = 0.357?m/s) about 95% of the critical velocity of the uniform bed sand that had a median diameter of 0.81?mm. The flow measurements by the ADV were taken within the intermediate (having depths of 0.25, 0.5, and 0.75 times the equilibrium scour depth) and equilibrium scour holes (frozen by spraying glue) at a circular pier of diameter 0.12?m. In order to have a comparative study, the ADV measurements within an equilibrium scour hole at a square pier (side facing the approaching flow) of sides equaling the diameter of the circular pier were also taken. The contours of the time-averaged velocities, turbulence intensities, and Reynolds stresses at different azimuthal planes (0, 45, and 90°) are presented. Vector plots of the flow field at azimuthal planes reveal the evolution of the characteristics of the horseshoe vortex flow associated with a downflow from intermediate stages to equilibrium condition of scour holes. The bed-shear stresses are determined from the Reynolds stress distributions. The flow characteristics of the horseshoe vortex are discussed from the point of view of the similarity with the velocity and turbulence characteristic scales. The imperative observation is that the flow and turbulence intensities in the horseshoe vortex flow in a developing scour hole are reasonably similar.  相似文献   

9.
A field study was conducted to determine the effects of a channel transition on turbulence characteristics. Detailed three-dimensional (3D) flow measurements were collected at a cross section that is located downstream of a gradual channel expansion. These measurements were obtained via an acoustic doppler velocimeter and include the 3D velocity field, the mean local velocities, the turbulent intensities, the frictional characteristics of the flow, the secondary velocity along the transverse plane, and the instantaneous shear stress components in the streamwise and transverse directions. Analysis of the 3D flow data indicates that the turbulent flow on the outer bank of the channel is anisotropic. Such anisotropy of turbulence, which is attributed to the gradual expansion in the channel and bed roughness, yields the development of a secondary flow of Prandtl’s second kind as reported in 1952. In particular, it was found that turbulent intensities in the vertical and transverse directions on the outer bank section are different in magnitude creating turbulence anisotropy in the cross-sectional plane and secondary flows of the second kind. Turbulent intensities increase toward the free surface indicating the transfer of a higher-momentum flux from the channel bed to the free surface, which contradicts common wisdom. Results for the normalized stress components in the streamwise and transverse direction show similar behavior to the intensities. Moreover, the nonlinear distribution of stresses is indicative of the oscillatory nature of the flow induced by the secondary flows of Prandtl’s second kind. A similar behavior was found for flows in straight rectangular channels over different roughness. Finally, a comparison between the secondary current velocity with the mainstream velocity indicates that secondary flow of Prandtl’s second kind is present within the right half of the measured cross section.  相似文献   

10.
This study accurately predicts cases of turbulent flow around a surface-mounted two-dimensional rib of varying length. The numerical method employs a finite-difference scheme for integrating the elliptic Reynolds-averaged Navier-Stokes equations and the continuity equation. The two-equation k ? ε turbulence model is employed to simulate the turbulent transport quantities and solve the problem. The near-wall regions of the separated sides of the rib are resolved by a near-wall model in a two-layer approach instead of the wall-function approximation. Computations for flow over a surface-mounted rectangular rib are conducted for varying rib lengths. Results indicate that upstream of the obstacle the length of the recirculating region remains unchanged with varying rib length, while the downstream length of the recirculating region is a strong function of rib length and changes nearly linearly as B∕H varies from 0.1 to 4.0. Reattachment on top of the rib, owing to its increasing length, affects the downstream boundary layer development.  相似文献   

11.
Mean Flow and Turbulence Structure in Vertical Slot Fishways   总被引:1,自引:0,他引:1  
This paper presents the results of an experimental study on the mean and turbulence structures of flow in a vertical slot fishway with slopes of 5.06 and 10.52%. Two flow patterns existed in the fishway and for each one, two flow regions were formed in the pools: a jet flow region and a recirculating flow region. The mean kinetic energy decays rapidly in the jet region and the dissipation rate in most of the areas in the pool is less than 200?W/m3. For the jet flow, the nondimensional mean velocity profile across the jet agrees very well with that of a plane turbulent jet in the central part of the jet with some scatter near its boundaries. Its maximum velocity decays faster compared to a plane turbulent jet in a large stagnant ambient. The jet presents different turbulence structure for the two flow patterns and for each pattern, the turbulence characteristics appear different between the left and right halves of the jet. However, the turbulence characteristics show some similarity for each case. The normalized energy dissipation rate shows some similarity and has a maximum value on the center of the jet. The results are believed to provide useful insight on the turbulence characteristics of flow in vertical slot fishways and can be used to verify numerical models and also for guidance in the design of fishways in the future.  相似文献   

12.
A chimera overset grid flow solver is developed for solving the unsteady Reynolds-averaged Navier-Stokes (RANS) equations in arbitrarily complex, multiconnected domains. The details of the numerical method were presented in Part I of this paper. In this work, the method is validated and applied to investigate the physics of flow past a real-life bridge foundation mounted on a fixed flat bed. It is shown that the numerical model can reproduce large-scale unsteady vortices that contain a significant portion of the total turbulence kinetic energy. These coherent motions cannot be captured in previous steady three-dimensional (3D) models. To validate the importance of the unsteady motions, experiments are conducted in the Georgia Institute of Technology scour flume facility. The measured mean velocity and turbulence kinetic energy profiles are compared with the numerical simulation results and are shown to be in good agreement with the numerical simulations. A series of numerical tests is carried out to examine the sensitivity of the solutions to grid refinement and investigate the effect of inflow and far-field boundary conditions. As further validation of the numerical results, the sensitivity of the turbulence kinetic energy profiles on either side of the complex pier bent to a slight asymmetry of the approach flow observed in the experiments is reproduced by the numerical model. In addition, the computed flat-bed flow characteristics are analyzed in comparison with the scour patterns observed in the laboratory to identify key flow features responsible for the initiation of scour. Regions of maximum shear velocity are shown to correspond to maximum scour depths in the shear zone to either side of the upstream pier, but numerical values of vertical velocity are found to be very important in explaining scour and deposition patterns immediately upstream and downstream of the pier bent.  相似文献   

13.
Vertical slot fishways are hydraulic structures which allow the upstream migration of fish through obstructions in rivers. The velocity, water depth, and turbulence fields are of great importance in order to allow the fish swimming through the fishway, and therefore must be considered for design purposes. The aim of this paper is to assess the possibility of using a two-dimensional shallow water model coupled with a suitable turbulence model to compute the flow pattern and turbulence field in vertical slot fishways. Three depth-averaged turbulence models of different complexity are used in the numerical simulations: a mixing length model, a k?ε model, and an algebraic stress model. The numerical results for the velocity, water depth, turbulent kinetic energy, and Reynolds stresses are compared with comprehensive experimental data for three different discharges covering the usual working conditions of vertical slot fishways. The agreement between experimental and numerical data is very satisfactory. The results show the importance of the turbulence model in the numerical simulations, and can be considered as a useful complementary tool for practical design purposes.  相似文献   

14.
Sharp open-channel bends are commonly encountered in hydraulic engineering design. Disturbances such as secondary flows and flow separation caused by the bend may persist for considerable distances in the downstream channel. A simple way of reducing these disturbances is through the insertion of vertical vanes in the bend section. A laser Doppler anemometry (LDA) unit was used to measure the three-dimensional mean and turbulent velocity components of flow in an experimental rectangular open-channel bend. Flow characteristics of the bend with no vanes are compared with those of bends having one or three vertical vanes. The size of the flow separation zone at the inner wall of the bend was determined from dye visualization data and confirmed with mean streamwise velocity data. Results show that the vertical vanes are effective in considerably reducing flow separation, intensity of secondary flows, and turbulence energy in the downstream channel. Furthermore, energy loss for bends with vanes is slightly less than for the no-vane case.  相似文献   

15.
The influence of bed suction on the characteristics of turbulent open channel flow is studied in a laboratory flume using a two-component laser Doppler velocimeter. The experimental results show how bed suction significantly affects the mean flow properties, turbulence levels, and Reynolds stress distributions. The data reveal the presence of a more negative vertical (downward) velocity. The results also show how the horizontal and vertical turbulence intensities and Reynolds shear stresses respond to suction. All these properties are found to reduce with increasing relative suctions: decreasing more rapidly around the bed region than that near the free surface. In the downstream direction, the flow structure in the suction zone undergoes a process of rapid readjustment within a transitional region. Beyond this region, the turbulence flow structures asymptotes toward an “equilibrium” region.  相似文献   

16.
A developing boundary layer starts at the spillway crest until it reaches the free surface at the so-called inception point, where the natural air entrainment is initiated. A detailed reanalysis of the turbulent velocity profiles on steep chutes is made herein, including mean values for the parameters of the complete turbulent velocity profile in the turbulent rough flow regime, given by the log-wake law. Accounting both for the laws of the wall and the wake, a new rational approach is proposed for a power-law velocity profile within the boundary layer of turbulent rough chute flow. This novel approach directly includes the power-law parameters and does not require for a profile matching, as is currently required. The results obtained for the turbulent velocity profiles were applied to analytically determine the resistance characteristics for chute flows. The results apply to the developing flow zone upstream of air inception in chute spillways.  相似文献   

17.
The characteristics of shear layer structure between the sliding jet and the pool for skimming flows over a vertical drop pool were investigated experimentally, using flow visualization technique and high speed particle image velocimetry. Four series of experiments having different end sill ratios (h/H = 0.12, 0.43, 0.71 and 1.0, where h=end sill height and H=drop height) with various approaching flow discharges were performed to measure the detailed quantitative velocity fields of the shear layer. The mean velocities and turbulence properties were obtained by ensemble averaging the repeated measurements. From the velocity profiles, it is found that the growth of the shear layer in the downward direction as the jet slides down the pool represents the momentum exchange. Analyzing the distribution of measured velocity, the similarity profile of the mean velocity at different cross sections along the shear layer was obtained. The proposed characteristic scales provided unique similarity profiles having promising regression coefficient. The selection of these characteristic scales is also discussed. Further, the spatial variations of mean velocity profiles, turbulence intensities, in-plane turbulent kinetic energy, and Reynolds shear stress were also elucidated in detail. The imperative observation is that the Reynolds shear stress dominates the major part along the shear layer as compared to the viscous shear stress. The study also provides an insight into the flow phenomena through the velocity and turbulent characteristics.  相似文献   

18.
This paper presents the results of an investigation concerning the development of a turbulent boundary layer over a 2D symmetrical aerofoil and a 3D axisymmetric body with rigid and flexible surfaces. The experimental work included detailed measurements of the mean velocity profiles, pressure distribution, and drag force. The thin shear layer equations were solved numerically using a modified turbulence model to obtain the characteristics of the turbulent boundary layer. The results of this study indicate a significant difference between the characteristics of flow over rigid surfaces and those of flow over flexible surfaces of the same geometry. The mean velocity of flow in the case of flexible surfaces is smaller than the corresponding velocity of flow in the case of a rigid surface for a major part of the boundary layer. The boundary layer thicknesses are consistently higher on flexible surfaces than those on the corresponding rigid surfaces. Furthermore, in the case of flexible surfaces, drag reduction was always observed. The amount of reduction was seen to be systematically dependent on the characteristics of the flexible surface.  相似文献   

19.
Mechanism of sediment transport is composed of complicated interactions between turbulent flow, particle motion, and bed configurations. Of particular significance is the interaction between turbulence and particle motion, although turbulence measurements of particle-laden two phase flow have been a problem for a long time, especially in the near-wall region. In this study, simultaneous measurements of both the particles and fluid (water) were conducted in particle-laden two phase open channel flows by means of a discriminator particle-tracking velocimetry. The mean velocity and turbulence characteristics for fluid and particles each were examined in comparison with those in clear-water (particle-free) flow, together with previous existing data measured by laser Doppler anemometer and phase Doppler anemometer. The relative velocity and the turbulence modulation, which are the most important topics in two phase-flow approach, were revealed by varying the particle diameter and specific density. The fluid-sweeps are more contributory to the motion of particles than the fluid ejections in the near-wall region. In turn, the particle-sweeps transport the high momentum to the carrier fluid and enhance the turbulence intensities of fluid.  相似文献   

20.
The time-averaged characteristics of turbulent wall-wake flows downstream of a sphere placed on a rough wall are studied. The profiles of the defect of streamwise velocity, Reynolds shear stress, and turbulence intensities exhibit some degree of similarities when they are scaled by their respective peak defect values. For the velocity defect profiles, the vertical distances are scaled by the height of the location of the half-peak velocity defect. However, for the defect profiles of the Reynolds shear stress and the turbulence intensities, the vertical distances are scaled by the height of the location of the half-peak Reynolds shear stress defect. The magnitudes of the peak defect of all the quantities diminish with the distance downstream of the sphere characterizing the recovery of their undisturbed profiles. Additionally, the theoretical similarity solution for the velocity defect profiles is obtained. The third-order correlations imply that in the inner layer of wall wakes, a streamwise acceleration is prevalent and associated with a downward flux, suggesting sweeps. In contrast, in the outer layer, a streamwise deceleration exists and is associated with an upward flux, suggesting ejections. The profiles of the energy budget show that the turbulent and pressure energy diffusions oppose each other. The turbulent production has a positive peak, and the pressure energy diffusion has a negative peak, indicating a large gain in turbulence production in the wall-wake flows. The quadrant analysis confirms that in wall-wake flows, sweeps are the governing mechanism resulting from an inrush of fluid streaks. The bursting events have shorter duration, but they are more frequent than those in upstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号