首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have isolated and characterized mutations in Drosophila neurotactin, a gene that encodes a cell adhesion protein widely expressed during neural development. Analysis of both loss and gain of gene function conditions during embryonic and postembryonic development revealed specific requirements for neurotactin during axon outgrowth, fasciculation, and guidance. Furthermore, embryos of some double mutant combinations of neurotactin and other genes encoding adhesion/signaling molecules, including neuroglian, derailed, and kekkon1, displayed phenotypic synergy. This result provides evidence for functional cooperativity in vivo between the adhesion and signaling pathways controlled by neurotactin and the other three genes.  相似文献   

3.
Heterodimeric cell surface receptor integrin is widely expressed in the nervous system, but its specific role during axon development has not been directly tested in vivo. We show that the Drosophila nervous system expresses low levels of positron-specific (PS) integrin subunits alphaPS1, alphaPS2, and betaPS during embryonic axogenesis. Furthermore, certain subsets of neurons express higher levels of integrin mRNAs than do the rest. Null mutations in either the alphaPS1 or alphaPS2 subunit gene cause widespread axon pathfinding errors that can be rescued by supplying the wild-type integrin subunit to the mutant nervous system. In contrast, misexpressing either the alphaPS1 or alphaPS2 integrin subunit in all neurons leads to no obvious axon pathfinding errors. We propose that integrin does not itself serve as either a "clutch" constituting molecule or a specific growth cone "receptor," as proposed previously, but rather as part of a molecular network that cooperatively guarantees accurate axon guidance.  相似文献   

4.
5.
The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.  相似文献   

6.
7.
8.
The 14-3-3 proteins are small, cytosolic, evolutionarily conserved proteins expressed abundantly in the nervous system. Although they were discovered more than 30 yr ago, their function in the nervous system has remained enigmatic. Several recent studies have helped to clarify their biological function. Crystallographic investigations have revealed that 14-3-3 proteins exist as dimers and that they contain a specific region for binding to other proteins. The interacting proteins, in turn, contain a 14-3-3 binding motif; proteins that interact with 14-3-3 dimers include PKC and Raf, protein kinases with critical roles in neuronal signaling. These proteins are capable of activating Raf in vitro, and this role has been verified by in vivo studies in Drosophila. Most interestingly, mutations in the Drosophila 14-3-3 genes disrupt neuronal differentiation, synaptic plasticity, and behavioral plasticity, establishing a role for these proteins in the development and function of the nervous system.  相似文献   

9.
The Drosophila gene shuttle craft (stc) is expressed zygotically in the embryonic central nervous system (CNS) where it is required to maintain the proper morphology of motoneuronal axon nerve routes following their migration from the ventral cord. Here, we report that a prominent maternal source of STC protein is also present throughout both oogenesis and embryogenesis. To determine whether this maternal component is required in the ovary and/or embryo, we used the Drosophila autosomal dominant female sterile technique to generate germ-line clones that lacked the stc maternal function. Our results demonstrate that a maternally derived source of STC protein is required during embryogenesis but not oogenesis. In contrast to the zygotic phenotype, the primary defect in embryos derived from stc germ-line clones affects segmentation by causing disruptions and deletions in distinct thoracic (T1-T3) and abdominal (A4-A8) segments. These localized defects are responsible for additional phenotypes observed later in development which include gaps in the ventral nerve cord and deletions of denticle belts in the cuticle. An additional phenotype occurring in all other neuromeric segments consists of the misguided migration of motoneuronal axons as they project out of the ventral nerve cord. Thus, the stc zygotic function is required later in development and cannot correct the segmentation and subsequent CNS abnormalities associated with loss of its earlier acting maternally derived activity.  相似文献   

10.
11.
The Drosophila no-on-transient A (nonA) gene is involved in the visual behaviors and courtship song of the fly. The NONA polypeptide contains two copies of the RNA-recognition motif (RRM), a hallmark of proteins involved in RNA binding, and an adjacent conserved charged region. This 311-amino-acid region is found in four other proteins and largely overlaps the Drosophila-Behavior/Human Splicing (or DBHS) domain. The newest family member, Drosophila nAhomo, was discovered in a database search, and encodes a protein with 80% identity to NONA. In this study, three nonA mutations generated by chemical mutagenesis were sequenced and found to fall within the conserved region. Site-directed mutagenesis of the two RRMs, and within a (conserved) charged region located C-terminal to them, was performed to determine the significance of these domains with respect to whole-organismal phenotypes. Behavior and viability were assessed in transformed flies, the genetic background of which lacks the nonA locus. Point mutations of amino acid 548 in the charged region confirmed the etiology of the nonAdiss courtship-song mutation and showed that a milder substitution at this site produced intermediate singing behavior, although it failed to rescue visual defects. Mutagenesis of the RRM1 domain resulted in effects on viability, vision, and courtship song. However, amino acid substitutions in RNP-II of RRM2 led to near-normal phenotypes, and the in vivo nonA mutations located in or near RRM2 caused visual defects only. Thus, we suggest that the first RRM could be important for all functions influenced by nonA, whereas the second RRM may be required primarily for normal vision.  相似文献   

12.
We have isolated a novel serine/ threonine kinase gene designated Gek1 from mouse primordial germ cell-derived embryonic germ cell. Gek1 is preferentially expressed in meiotic testicular germ cells and primordial germ cells. Gek1 mRNA is also detected in several other tissues, including hematopoietic organs in adult mice and central nervous system in embryos. The Gek1 cDNA encodes a protein with the consensus sequence of the catalytic domain of protein kinases in its N-terminal region. The deduced amino acid sequence of Gek1 in the kinase domain is related to those encoded by the Saccharomyces cerevisiae STE20, CDC15, and Drosophila melanogaster ninaC. The patterns of expression and the structural features of Gek1 suggest that the gene product is involved in signal transduction or nuclear division of germ cells and other proliferating cells. We also show that Gek1 locates on chromosome 11, near the wr locus, showing neuronal and reproductive defects.  相似文献   

13.
14.
Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.  相似文献   

15.
BACKGROUND: Mutations in the gene for cardiac myosin-binding protein C account for approximately 15 percent of cases of familial hypertrophic cardiomyopathy. The spectrum of disease-causing mutations and the associated clinical features of these gene defects are unknown. METHODS: DNA sequences encoding cardiac myosin-binding protein C were determined in unrelated patients with familial hypertrophic cardiomyopathy. Mutations were found in 16 probands, who had 574 family members at risk of inheriting these defects. The genotypes of these family members were determined, and the clinical status of 212 family members with mutations in the gene for cardiac myosin-binding protein C was assessed. RESULTS: Twelve novel mutations were identified in probands from 16 families. Four were missense mutations; eight defects (insertions, deletions, and splice mutations) were predicted to truncate cardiac myosin-binding protein C. The clinical expression of either missense or truncation mutations was similar to that observed for other genetic causes of hypertrophic cardiomyopathy, but the age at onset of the disease differed markedly. Only 58 percent of adults under the age of 50 years who had a mutation in the cardiac myosin-binding protein C gene (68 of 117 patients) had cardiac hypertrophy; disease penetrance remained incomplete through the age of 60 years. Survival was generally better than that observed among patients with hypertrophic cardiomyopathy caused by other mutations in the genes for sarcomere proteins. Most deaths due to cardiac causes in these families occurred suddenly. CONCLUSIONS: The clinical expression of mutations in the gene for cardiac myosin-binding protein C is often delayed until middle age or old age. Delayed expression of cardiac hypertrophy and a favorable clinical course may hinder recognition of the heritable nature of mutations in the cardiac myosin-binding protein C gene. Clinical screening in adult life may be warranted for members of families characterized by hypertrophic cardiomyopathy.  相似文献   

16.
We have identified two members of a novel class of genes in Drosophila that encode putative transmembrane proteins with six leucine-rich repeats and a single immunoglobulin loop. These two molecules, Kek1 and Kek2, show striking conservation in their extracellular domains and have large and more divergent intracellular regions. Both genes are expressed in neurons as they differentiate in the embryonic central nervous system (CNS). kek1 is also expressed in other patterned epithelia, such as the follicle cells of the developing egg chamber, where it is found in a dorsal-ventral gradient around the oocyte. The homology of the kek genes to other known adhesion and signaling molecules, together with their expression patterns, suggests that both genes are involved in interactions at the cell surface. Genetic analysis reveals that deletion of the kek1 gene causes no obvious developmental defects. The coexpression of kek2 in the CNS leads us to suggest that Kek1 is part of a family of cell surface proteins with redundant function.  相似文献   

17.
The genetic pathways that control development of the early mammalian embryo have remained poorly understood, in part because the systematic mutant screens that have been so successful in the identification of genes and pathways that direct embryonic development in Drosophila, Caenorhabditis elegans, and zebrafish have not been applied to mammalian embryogenesis. Here we demonstrate that chemical mutagenesis with ethylnitrosourea can be combined with the resources of mouse genomics to identify new genes that are essential for mammalian embryogenesis. A pilot screen for abnormal morphological phenotypes of midgestation embryos identified five mutant lines; the phenotypes of four of the lines are caused by recessive traits that map to single regions of the genome. Three mutant lines display defects in neural tube closure: one is caused by an allele of the open brain (opb) locus, one defines a previously unknown locus, and one has a complex genetic basis. Two mutations produce novel early phenotypes and map to regions of the genome not previously implicated in embryonic patterning.  相似文献   

18.
Cytoplasmic organization, nuclear migration, and nuclear division in the early syncytial Drosophila embryo are all modulated by the cytoskeleton. In an attempt to identify genes involved in cytoskeletal functions, we have examined a collection of maternal-effect lethal mutations induced by single P-element transposition for those that cause defects in nuclear movement, organization, or morphology during the syncytial embryonic divisions. We describe three mutations, grapes, scrambled, and nuclear-fallout, which define three previously uncharacterized genes. Females homozygous for these mutations produce embryos that exhibit extensive mitotic division errors only after the nuclei migrate to the surface. Analysis of the microfilament and microtubule organization in embryos derived from these newly identified mutations reveal disruptions in the cortical cytoskeleton. Each of the three mutations disrupts the actin-based pseudocleavage furrows and the cellularization furrows in a distinct fashion. In addition to identifying new genes involved in cytoskeletal organization, these mutations provide insights into cytoskeletal function during early Drosophila embryogenesis.  相似文献   

19.
The linotte (lio) mutant was first isolated as a memory mutant. The lio gene encodes a putative receptor tyrosine kinase (RTK), homologous to the human protein RYK. This gene has been independently identified in a screen for embryonic nervous system axonal guidance defects and called derailed (drl). Here, we report that linotte mutants present structural brain defects in the adult central complex (CX) and mushroom bodies (MB). linotte and derailed are allelic for this phenotype, which can be rescued by a drl+ transgene. The Lio RTK is expressed preferentially in the adult CX and MB. Our results suggest that, analogous to its role within the embryonic nervous system, the Lio RTK is involved in neuronal pathway selection during adult brain development.  相似文献   

20.
We report the identification and characterization of Dnrk (Drosophila neurospecific receptor kinase), a Drosophila gene encoding a putative receptor tyrosine kinase (RTK) highly related to the Trk and Ror families of RTKs. During Drosophila embryogenesis, the Dnrk gene is expressed specifically in the developing nervous system. The Dnrk protein possesses two conserved cysteine-containing domains and a kringle domain within its extracellular domain, resembling those observed in Ror family RTKs (Ror1, Ror2, and a Drosophila Ror, Dror). This protein contains the catalytic tyrosine kinase (TK) domain with two putative ATP-binding motifs, resembling those observed in another Drosophila RTK (Dtrk) that mediates homophilic cell adhesion. The TK domain of Dnrk, expressed in bacteria or mammalian cells, exhibits apparent autophosphorylation activities in vitro. The TK domain lacking the distal ATP-binding motif also exhibits autophosphorylation activity, yet to a lesser extent. In addition to its TK activity, there are several putative tyrosine-containing motifs that upon phosphorylation may interact with Src homology 2 regions of other signaling molecules. Collectively, these results suggest that Dnrk may play an important role in neural development during Drosophila embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号