首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 78 毫秒
1.
Melt spinning technology was used to prepare the Mg2 Ni-type(Mg24 Ni10 Cu2)100–x Ndx(x=0,5,10,15,20) alloys in order to obtain a nanocrystalline and amorphous structure.The effects of Nd content and spinning rate on the structures and electrochemical hydrogen storage performances of the alloys were investigated.The structure characterizations of X-ray diffraction(XRD),transmission electron microscopy(TEM) and scanning electron microscopy(SEM) linked with energy dispersive spectroscopy(EDS) revealed that the as-spun Nd-free alloy displayed an entire nanocrystalline structure,whereas the as-spun Nd-added alloys held a nanocrystalline and amorphous structure and the degree of amorphization visibly increased with the rising of Nd content and spinning rate,suggesting that the addition of Nd facilitated the glass forming of the Mg2 Ni-type alloy.The electrochemical measurements indicated that the addition of Nd and melt spinning improved the electrochemical hydrogen storage performances of the alloys significantly.The discharge capacities of the as-cast and spun alloys exhibited maximum values when Nd content was x=10,which were 86.4,200.5,266.3,402.5 and 452.8 mAh/g corresponding to the spinning rate of 0(As-cast was defined as the spinning rate of 0 m/s),10,20,30 and 40 m/s,respectively.The cycle stability(S20,the capacity maintain rate at 20thcycle) of the as-cast alloy always rose with the increasing of Nd content,and those of the as-spun alloys exhibited the maximum values for Nd content x=10,which were 77.9%,83.4% 89.2% and 89.7%,corresponding to the spinning rate of 10,20,30 and 40 m/s,respectively.  相似文献   

2.
In order to investigate the effect of substituting La with Pr on structural and hydrogen storage properties of La-Mg-Ni system (AB3.5-type) hydrogen storage alloys, a series of La0.65-xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0, 0.10, 0.15, 0.2) hydrogen storage alloys were prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) analyses revealed that two alloys (x=0.0 and 0.10) were composed of (La, Mg)2(Ni,Al)7 phase, La(Ni,Al)5 phase and (La,Mg)Ni2 phase, while other alloys (x=0.15 and 0.20) consisted of (La,Mg)2(Ni,Al)7 phase, La(Ni,Al)5 phase, (La,Mg)Ni2 phase and (La, Mg)(Ni,Al)3 phase. All alloys showed, however, only one pressure plateau in P-C isotherms. The Pr/La ratio in alloy composition influenced hydrogen storage capacity and kinetics properties. Elec-trochemical studies showed that the discharge capacity decreased from 360 mAh/g (x=0.00) to 335 mAh/g (x=0.20) as x increased. But the high-rate dischargeability (HRD) of alloy electrodes increased from 26% (x=0.00) to 56% (x=0.20) at a discharge current density of Id=1800 mA/g. Anode polarization measurements were done to further understand the electrochemical kinetics properties after Pr substitution.  相似文献   

3.
Effect of Ce addition on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex (x=0, 0.5at.%, 0.8at.% and 1.0at.%) alloys was studied by X-ray diffraction, scanning electron microscopy and P-C-isotherm measurements. The results indicated that Ce addition was a useful way to improve the flatness of the plateau and increase hydrogen storage capacity of Ti24Cr17.5V50Fe8.5 alloy. It was indicated that both homogenization of composition and increase of hydrogen diffusion coefficient were the main reasons for improving the hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex alloys.  相似文献   

4.
The nanocrystalline and amorphous Mg2Ni-type Mg2–xLaxNi (x=0,0.2) hydrogen storage alloys were synthesized by melt-spinning technique.The as-spun alloy ribbons were obtained.The microstructures of the as-spun ribbons were characterized by X-ray diffraction (XRD),high resolution transmission electronic microscopy (HRTEM) and electron diffraction (ED).The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus,and their electrochemical kinet...  相似文献   

5.
The nanocrystalline and amorphous Mg2Ni-type Mg2–xLaxNi (x=0,0.2) hydrogen storage alloys were synthesized by melt-spinning technique.The as-spun alloy ribbons were obtained.The microstructures of the as-spun ribbons were characterized by X-ray diffraction (XRD),high resolution transmission electronic microscopy (HRTEM) and electron diffraction (ED).The hydrogen absorption and desorption kinetics of the alloys were measured using an automatically controlled Sieverts apparatus,and their electrochemical kinetics were tested by an automatic galvanostatic system.The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation (PARSTAT 2273).The hydrogen diffusion coefficients in the alloys were calculated by virtue of potential-step method.The obtained results showed that no amorphous phase was detected in the as-spun La-free alloy,but the as-spun alloys substituted by La held a major amorphous phase,con-firming that the substitution of La for Mg markedly intensified the glass forming ability of the Mg2Ni-type alloy.The substitution of La for Mg notably improved the electrochemical hydrogen storage kinetics of the Mg2Ni-type alloy.Furthermore,the hydrogen storage kinetics of the experimental alloys was evidently ameliorated with the spinning rate growing.  相似文献   

6.
The structure and hydriding/dehydriding behaviors of La2Mg17-10 wt.%Ni composite prepared by mechanical milling were investigated. Compared with the un-milled sample, the as-milled alloys were ready to be activated and the kinetics of hydrogen absorption was relatively fast even at environmental temperature. The composite milled for 10 h absorbed 3.16 wt.% hydrogen within 100 s at 290 K. The kinetic mechanisms of hydriding/dehydriding reactions were analyzed by using a new model. The results showed that hydrogenation processes for all composites were controlled by hydrogen diffusion and the minimum activation energy was 15.3 kJ/mol H2 for the composite milled for 10 h. Mechanical milling changed the dehydriding reaction rate-controlling step from surface penetration to diffusion and reduced the activation energy from 204.6 to 87.4 kJ/mol H2. The optimum milled duration was 5 h for desorption in our trials.  相似文献   

7.
The nanocrystalline and amorphous Mg2Ni-type electrode alloys with a composition of Mg20?xYxNi10 (x=0, 1, 2, 3 and 4) were fabricated by mechanical milling. Effects of Y content on the structures and e...  相似文献   

8.
采用氢化燃烧合成和机械球磨复合制备了LaMg11.5Ni0.5三元储氢材料,物相分析可知,该体系由MgH2、Mg、Mg2NiH4,Mg2NiH0.3,LaH2以及少量LaNi5H0.3构成.氢化燃烧合成产物LaMg11.5Ni0.5经20h球磨后,在423K时,100s内达到饱和吸氢量3.42%(质量分数);在523K时,1 800s内放氢基本完全,放氢量为3.29%(质量分数).研究表明,该产物在523K时的放氢过程受界面移动过程控制.  相似文献   

9.
In order to investigate the effect of different B-site additions on phase structure and electrochemical properties of cobalt-free La-Mg-Ni based alloys, La0.80Mg0.20Ni2.85Al0.11M0.53 (M=Ni, Si, Cr, Cu, Fe) hydrogen storage alloys were prepared and studied systemati-cally. X-ray powder diffraction showed that the alloys consisted mainly of LaNi3 phase and LaNi5 phase except that Cr addition caused a minor Cr phase. Electrochemical testing indicated that alloys with additional Ni, Cr, Cu or Fe were activated within only 1-2 cycles, while that with Si addition needed 4 cycles. Adding Si, Cu and Fe increased cycling stability of La-Mg-Ni based alloys. However, maximum discharge capacity decreased from 362 mAh/g to 215 mAh/g in the order of Ni>Fe>Cu>Cr>Si. In addition, electrochemical kinetics of alloy electrodes was also researched by measuring high rate discharge ability (HRD), hydrogen diffusion coefficient (D) and limiting current density (IL).  相似文献   

10.
The structure and high-temperature electrochemical properties of the as-cast and annealed (940 °C, 8 h) La0.60Nd0.15Mg0.25Ni3.3Si0.10 hydrogen storage alloys were investigated. The X-ray diffraction revealed that the multiphase structure of the as-cast alloy with LaNi5 phase as the main phase was converted into a double-phase structure with La2Ni7 phase as the main phase after annealing. The surface morphology studied by scanning electronic microscope (SEM) showed that the annealed alloy had a much higher anti-corrosion ability than the as-cast alloy. Both alloys presented excellent activation characteristics at all test temperatures. The maximum discharge capacity of the as-cast alloy decreased when the test temperature increased, while the temperature almost had no effect on the annealed alloy. As the test temperature increased, the cyclic stability and charge retention of both alloys decreased, and these properties were improved significantly by annealing.  相似文献   

11.
在氩气保护下,采用机械合金化法制备Mg_(10)Al_((7-x))Li_2Ti_x(x=0,1,2,3)合金,并通过XRD、SEM以及DSC等手段对合金进行表征。结果表明,适量的Ti替代Al可以提高合金的吸氢量、降低合金的初始氢化/脱氢温度和提高合金氢化/脱氢动力学性能。Mg_(10)Al_((7-x))Li_2Ti_x(x=1,2,3)合金样品比Mg10Al7Li2合金的初始氢化温度都降低了62K,而初始脱氢温度则分别降低了77、98和59K。当Ti的替代量为x=2时,合金的综合储氢性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号