首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在Gleeble-1500热模拟机上,对5A01铝合金进行等温热压缩实验,研究该合金在变形温度为350~450℃、应变速率为0.01~1s-1条件下的热变形行为,建立其热加工图。结果表明:5A01铝合金是温度、正应变速率敏感材料,其流变应力随变形温度降低和应变速率升高而增大,利用峰值应力获得的该合金热加工图表明合金热变形存在两个失稳区域,即变形温度为350~390℃,应变速率为0.01~0.2s-1的区域和变形温度为405~450℃,应变速率为0.2~1s-1的区域;本实验条件下最佳加工参数为变形温度450℃,应变速率0.01s-1。  相似文献   

2.
在Oleeble-1500热模拟机上,对5083铝合金进行高温等温压缩热模拟,分析了流变应力与应变速率、变形温度之间的关系和高温变形的内在机理,同时血对合金元素对流变应力的影响进行了分析。结果表明:在应变速率为0.01s^-1、0.1s^-1、1s^-1(400℃、450℃)和0.01s^-1(350℃),其流变应力出现明显的峰值应力,表现出连续动态冉结品特征;在0.1s^-1、1s^-1(350℃),表现为稳态流变,为动态回复。采用双曲正弦形式的Arrhenius关系来描述5083铝合金高温变形时的流变应力,获得5083的材料常数A、α、n和Q分别为0.06918s^-1、0.01002MPa^-1、3.2819和149.67kJ/mol。在不同的应变率比值下计算应变率敏感(SRS)系数(m=dlnσ/dlnε),发现随着温度升高,应变增大,m值增大。  相似文献   

3.
3104铝合金热变形流变应力模型   总被引:1,自引:0,他引:1  
陈文  林林  邓成林 《铝加工》2007,(5):22-24
采用等温压缩试验,研究了3104铝合金在应变速率为0.001-1s^-1、变形温度为573-773K条件下的流变应力行为。结果表明,3104合金流变应力对应变速率和变形温度十分敏感,合金高温塑性变形时存在稳态流变特征,并建立了合金热变形流变应力模型。  相似文献   

4.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

5.
6069铝合金的热变形行为和加工图   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟实验机在温度为300~450℃,应变速率为0.01~10 s?1条件下对6069铝合金进行热压缩实验,研究该合金的热变形行为及热加工特征,建立热变形本构方程和加工图。结果表明,6069铝合金热变形过程中的流变行为可用双曲正弦模型来描述,在实验条件下的平均变形激活能为289.36 kJ/mol。真应变为0.7的加工图表明合金在高温变形时存在2个安全加工区域,即变形温度为300~350℃、应变速率为1~10 s?1的区域和变形温度为380~450℃、应变速率为0.01~0.3 s?1的区域。适合加工的条件是变形温度为350℃,应变速率0.01 s?1。  相似文献   

6.
采用Gleeble-1500D热模拟试验机进行高温等温压缩变形试验,研究了B95оч铝合金在变形温度为330~450℃、应变速率为0.001~1.000 s-1条件下的热变形行为,并利用金相显微镜(OM)和透射电子显微电镜(TEM)分析了B95оч铝合金在不同变形条件下的组织特征。研究结果表明:变形温度和应变速率对B95оч铝合金的流变应力大小有着显著的影响,合金的流变应力随变形温度的升高而降低,随应变速率的增加而增大。B95оч铝合金在450℃以下热变形过程中析出大量的第二相粒子,并随着温度的降低数量显著增加。B95оч铝合金热变形后平均亚晶尺寸随Zener-Hollomon参数的升高而减小,即随着变形温度的降低、应变速率的升高而减小。B95оч铝合金热变形的流变应力行为可以用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为124.09 kJ·mol-1。  相似文献   

7.
Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金的热变形研究   总被引:2,自引:2,他引:0  
采用Gleeble-1500热模拟机进行恒温和恒速压缩变形实验,变形温度范围为400~460 ℃,应变速率为0.001~0.1 s-1.研究了Al-Cu-Mg-Ag-Zr合金在高温塑性变形过程中流变应力的变化规律,确定了合金的变形激活能Q和应力指数n.结果表明:流变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大.可用包含Arrhenius项的Zener-Hollomon参数描述该合金高温塑性变形时的流变行为.  相似文献   

8.
7050高强铝合金高温塑性变形的流变应力研究   总被引:7,自引:1,他引:6  
通过在Gleeble1500D热模拟试验机上进行等温热压缩试验,研究了7050高强铝合金在变形温度为300~450℃和应变速率为0.01~10s-1条件下的流变应力变化规律,计算推导出包含Arrhenius项的zener-Hollomon参数描述7050合金高温压缩流变行为的表达式.结果表明:应变速率和变形温度对7050合金的流变应力影响显著,流变应力随温度升高而降低,随应变速率的提高而增大;7050合金属于正应变速率敏感材料,合金的形变激活能为163.7425 KJ·mol-1.  相似文献   

9.
采用Gleeble-1500热模拟机高温压缩试验,研究5A01铝合金在应变速牢为0.01~1s-1、变形温度为350~450℃条件下的流变行为,并利用光学显微镜分析合金在不同压缩条件下的组织形貌特征.结果表明:应变速率和变形温度的变化强烈影响合金流变应力的大小,流变应力随变形温度升高而降低,随应变速率提高而增大.采用双曲正弦形式ARRHENIUS的关系来描述5A01铝合金高温压缩变形时的流变应力行为,获得的材料常数A、α、n和Q分别为0.068 31 s-1、0.009 4 MPa-1、2.708 9和161.14 kJ/mol:在应变速率为0.01 s-1及变形温度低于400℃条件下变形时,5A01铝合金组织为纤维组织,而当变形温度升高到450℃时,再结晶程度很高,出现大量等轴晶.  相似文献   

10.
采用Gleeble热模拟压缩试验研究了7055铝合金的热变形行为和组织演变规律,获得了变形温度和应变速率理论参数,实现了工业生产验证。结果表明:当温度在380~460℃范围内,应变速率在0.001~0.1s-1间时,合金表现为稳态流变;应变速率为1s-1时,合金发生流变硬化;在此变形参数区间的组织演变以动态回复为主。当变形温度为460℃、应变速率为10s-1时,合金发生严重的塑性失稳。基于热模拟试验与组织分析提出了热变形工艺理论参数,并在工厂进行了挤压验证,最终确定了7055合金较佳的挤压温度为420~440℃,挤压速率为0.3~0.7 m/min。  相似文献   

11.
硫化锰夹杂物的热变形行为   总被引:7,自引:0,他引:7  
用模拟轧制方法研究了轧制工艺参数对硫系易切削钢中硫化锰夹杂物形态,大小,分布,及相对塑性的影响,试验结果表明,MnS随变形量的增加,其碎化方式呈周期性变化;MnS的相对塑性在变形温度为900℃时最大,1000℃最小,1150℃时较小。  相似文献   

12.
 采用Gleeble 1500热力模拟机测定了变形速率为1 s-1、10 s-1和20 s-1,变形程度75%,变形温度为1 200 ℃、1 100 ℃、1 000 ℃、900 ℃及800 ℃时硅锰系TRIP钢的应力 应变曲线。应用SPASS软件对TRIP钢变形抗力实验结果进行拟合,并模拟了变形条件对变形抗力的影响,得到数学模型公式。计算平均绝对误差均小于5 MPa,平均相对误差小于5%,最大绝对误差小于10 MPa,最大相对误差小于15%,误差均较小,计算结果属于允许范围。结果证明:真应变大于04应力基本稳定;变形温度低于1 100 ℃时,加工硬化比较明显,表明温度越低,加工硬化率越高。  相似文献   

13.
通过热模拟试验,研究了变形温度、变形速率、变形程度对12Cr2Mo1R钢变形抗力的影响,结果表明,在较低的温度和较高的变形速率下,12Cr2Mo1R钢变形抗力增加显著;在同一下变形程度下,随温度的升高,变形抗力降低。变形温度为800℃、变形速率为15 s-1时,变形抗力最大值为290 MPa;变形温度为1050℃、变形速率为1 s-1,变形抗力最小值为110 MPa。  相似文献   

14.
阀门钢5Cr21Mn9Ni4N温变形抗力分析及其数学模型   总被引:3,自引:0,他引:3  
雷战波  王占学 《钢铁》1995,30(9):54-58
对阀门钢5Cr21Mn9Ni4N在100~700℃的变形抗力与变形温度,变形速度的相互关系进行试验研究,并通过计算机回归分析得到其变形抗力数学模型:σs=984.13215ε0.1838022exp(-0.000891922TK)MPa(复相关系数R=0.9591329)。  相似文献   

15.
李正荣 《四川冶金》2009,31(1):29-31
通过实验室冶炼硅含量为0.3%的电工钢,采用Gleeble-3500热/力学模拟试验机进行不同的变形温度、变形速度和变形程度压缩试验,研究了变形温度、变形速度和变形程度对变形抗力的影响。试验结果表明:该电工钢在850~900℃存在双相区,在此温度段随着温度的降低,铁素体逐渐增多,变形抗力反而下降;温度是对变形抗力影响最为强烈的一个因素,随着变形温度的升高,电工钢的变形抗力减小(双相区相反)。采用合理的回归公式,得到相应的回归系数和回归曲线,回归结果与实际值吻合较好。根据回归结果修改轧制模型,并开展了热轧工业试验,试验结果表明计算负荷和实际负荷比较接近,均小于轧机的额定值。  相似文献   

16.
 在Gleeble 3500热模拟试验机上,用热压缩方法研究了原始组织为层片状珠光体的高碳钢在温度为913~973 K、应变速率为001~10 s-1范围内的温变形行为。结果表明:实验条件下,流变应力及峰值应变随变形温度的降低和应变速率的提高而增大。另外,回归出了高碳钢的峰值应力及峰值应变与变形温度、应变速率之间的关系,得到了相应的形变激活能和温变形方程式,为高碳钢的温变形工艺优化提供了理论依据。  相似文献   

17.
包钢(集团)凯捷建设工程公司承接的包头市灯工程在焊接制作中,对焊接变形及应力,采了驰技术保证措施,优化了焊接工艺从而控制了焊接变形,保证了制作质量和外观质量。本文重点对大型管、筒构件的现场焊接及变形控制做了深入的分析和探讨,具有较强的理论意义和实际应用推广价值。  相似文献   

18.
获各琦矿区新元古代渣尔泰群变质—变形作用强烈,后期变质—变形作用使矿体接受了多期次的变形改造。露头构造解析、显微构造观察以及变形石英EBSD组构分析揭示出矿区主要经历了2期不同温压条件下的剪切作用,第一期为NW-SE向高温剪切作用,变形温度在600℃左右;第二期为NE-SW向低温剪切作用,变形温度较低。依据硫化物显微组构等特征分析,初步认为矿体遭受后期区域变形改造明显,矿体的贫化和富集是变质—变形作用导致硫化物活化、迁移和重新就位的结果。  相似文献   

19.
锆是核工业的重要结构材料,又是优秀的化工耐蚀结构材料。锆合金的织构会对它的屈服强度、蠕变和疲劳强度、应力腐蚀开裂行为以及辐照尺寸变化等产生很大影响,因此变形机理的研究和织构控制在锆合金的开发利用中有十分重要的地位。综述了锆合金的变形机理,介绍了锆合金板材在不同轧制温度下的织构演化规律,以及退火温度对锆合金板材织构的影响,并总结了织构对锆合金板材力学性能的影响。最后指出,目前对锆合金板材加工后的织构进行精确预测还十分困难,需进行详细深入的研究,同时在加工中产生的织构对加_丁过程的影响以及与温度、应力分布、合金成分和组织的关系还需进一步认识。  相似文献   

20.
研究建立了运用通用有限元软件ANSYS求解六辊CVC轧机辊系三维弹性变形的有限元模型,进而以1750mm冷轧机组为对象,运用通用有限元软件ANSYS分析数百个工况下的数据,研究此类轧机的板形调控能力和辊间接触压力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号