首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
采用Gleeble-3800型热模拟试验机对熔铸态和锻态TiBw/TA15复合材料进行高温压缩变形试验,研究不同状态TiBw/TA15复合材料在变形量70%、变形温度900~1150℃、应变速率0.01~10 s-1条件下的热变形行为,建立热加工图,并分析该复合材料在热变形过程中的组织性能演变规律。结果表明,熔铸态TiBw/TA15复合材料的热加工工艺窗口为温度900~1150℃,应变速率2.72~10 s-1;温度1000~1100℃,应变速率0.01~0.03 s-1;温度1075~1130℃,应变速率0.01~0.13 s-1。锻态TiBw/TA15复合材料的热加工工艺窗口为温度900~975℃,应变速率0.37~10 s-1;温度960~1025℃,应变速率0.01~0.37 s-1;温度1025~1150℃,应变速率0.01~10 s-1。通过对比发现,锻态TiBw/TA15复合材料的热加工工艺窗口宽,热变形加工性能优于熔铸...  相似文献   

2.
利用Gleeble-3800热模拟试验机对Fe30Mn9Al0.9C钢进行不同变形温度(750~1 150℃)和不同应变速率(0.01~10 s-1)的热压缩试验,研究热变形行为及组织演变规律。结果表明,试验钢是温度和速率敏感材料,随着变形温度升高和应变速率的降低,变形抗力逐渐降低,动态再结晶更容易发生;变形后获得奥氏体基体分布极少量不连续带状铁素体的组织,铁素体优先承担应变导致在变形初期发生流变应力随应变增加急剧下降的现象;构建本构方程,得到激活能值为399.534 kJ/mol;通过构建热加工图得到良好加工性能的工艺窗口为950~1 050℃、0.01~0.07 s-1和1 075~1 150℃、1~10 s-1。  相似文献   

3.
付建辉 《特殊钢》2020,41(2):1-5
通过热压缩实验研究了HGH3126镍基合金(/%:≤0.005C,17.20Cr,4.21W,16.25Mo,5.49Fe,0.46Mn,0.20V)在变形温度为950~1200℃、应变速率为0.01~10 s-1的热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立了HGH3126合金高温热变形的流变应力本构方程。通过对高温热变形后的HGH3126合金显微组织进行观察,分析了变形温度和应变速率对HGH3126合金动态再结晶行为的影响。结果表明,变形温度越高,合金动态再结晶越容易形核;应变速率越小,合金动态再结晶过程进行得越充分。当应变速率0.1 s-1,变形温度1100℃时,该合金基本发生完全动态再结晶。  相似文献   

4.
采用Gleeble-3800热模拟试验机进行了DIN 1.2738塑料模具钢(/%:0.35~0.46C,0.20-0.40Si,1.30~1.60Mn,1.80~2.20Cr,0.90~1.20Ni,0.15~0.23Mo)的热压缩实验,获得了该钢在850~1250℃、应变速率在0.01~30的应力-应变曲线。基于得到的热变形数据,建立了该钢的峰值应力以及应变补偿的热变形本构方程和热加工图,并结合热加工图的结果分析了该钢合理的热加工参数范围。结果表明,DIN 1.2738钢的热变激活能为354.21 kJ/mol,利用建立的应变补偿的双曲正弦本构方程可对塑料模具钢的热变形曲线进行准确预测,通过加工图的分析可得DIN 1.2738塑料模具钢的最佳的热变形工艺参数范围为:(1)温度950~1 150℃,应变速率0.01~0.7 s-1;(2)温度1170~1200℃,应变速率0.01~1 s-1。  相似文献   

5.
王海宁  李萍  张清 《稀土》2023,(2):45-51
用铸造工艺制备Mg-5Sm-2Gd镁合金,使用Gleeble-1500热模拟试验机,在温度为300℃~450℃,应变速率为0.01 s-1~1 s-1的条件下,对铸态Mg-5Sm-2Gd合金进行热压缩实验,分析合金的流变应力与组织变化。结果表明,降低温度或增大应变速率,合金的热压缩流变应力增大。合金在热压缩过程中发生了动态再结晶。合金在300℃时激活能过大,不适合进行热压缩。在350℃~450℃范围内构建了合金的热压缩流变应力本构方程,其中热压缩激活能为232.017 kJ/mol。流变应力预测值与实际值误差绝对值在5.17%以内。  相似文献   

6.
为解决铸造高硼合金难热加工以及硼化物呈网状分布的问题,本文以多组元Fe-W-B合金为例,采用Gleeble-3500热模拟实验机研究了其在变形温度800℃~1150℃、应变速率0.01s-1~10s-1条件下的高温流变行为。结果表明,多组元Fe-W-B合金的高温流变应力状态主要受温度和应变速率影响,具体表现为流变应力随着应变速率降低和变形温度升高而减小,真应力-应变曲线表现出动态回复型和动态再结晶型特征。本文还构建了Arrhenius型热变形本构方程并对其准确性进行了验证;根据热加工图确定了多组元Fe-W-B合金最佳热加工窗口并进行锻造验证。锻后,多组元Fe-W-B合金中的网状硼化物被有效破碎并且力学性能大幅提升。  相似文献   

7.
在AISI8630钢基础上制备了一种微合金化8630钢。在变形温度为850~1200℃、应变速率为0.01~10 s-1、压缩量为60%条件下,使用Gleeble-3500热模拟试验机进行单向热压缩试验。分析微合金化8630钢在不同条件下的应力应变曲线及组织变化,确立试验钢的热变形本构方程,并基于动态材料模型(DMM)模型建立热加工图。结果表明:在试验过程中,当材料变形程度一定时,流变应力随着变形温度的升高和应变速率的降低而减小。通过修正拟合,材料热激活能为409.036 kJ/mol,预测理想变形条件温度为1 125~1 200℃,应变速率为0.01~0.1 s-1。  相似文献   

8.
利用Gleeble-3800热力模拟机,在温度950~1 150℃,应变速率0.1~10 s-1,变形量为70.9%的条件下,对9Cr3W3Co合金进行了单道次热变形实验。为了更好地模拟现场过程,分别采用道次变形量由大到小以及道次变形量由小到大的方案,进行多道次变形过程模拟,应变速率为5.0 s-1,总变形量为70.9%。研究了汽轮机叶片用9Cr3W3Co合金动态再结晶行为的变形特点,得到了合金的应力-应变曲线,并利用动态材料模型构建该合金在不同变形条件下的三维热加工图。结果表明,9Cr3W3Co合金的应力-应变曲线表现出应力随变形温度的升高而降低,随应变速率的增大而增大。为准确描述三者间的关系,建立了双曲正弦本构方程,最终得到其热激活能为655.051 kJ/mol,结合微观组织演变的结果分析,得出合金的最佳热加工区域应为:变形温度1 050~1 150℃,应变速率0.1~1 s-1,并且在快锻变形过程中,先大变形后小变形的锻造工艺有利于获得均匀的晶粒尺寸。  相似文献   

9.
白青青  刘庭耀 《特殊钢》2021,42(6):14-18
利用Gleeble3500热模拟试验机,在变形温度1000~1150 ℃,应变速率为0.01~10 s-1时对铸态Ni68Cu28Al合金进行热压缩模拟。分析了合金在不同条件下的流变应力曲线;建立了描述该合金高温压缩变形的本构方程;将本构方程应用于有限元分析软件DEFORM 3D中,并对合金热压缩过程进行数值模拟,分析工件内部的应变速率场、应变场和温度场变化。结果表明,铸态Ni68Cu28Al合金变形过程中的硬化效果非常大,动态回复和动态再结晶引起的软化作用不明显;变形过程材料未完全再结晶;合金热压缩过程具有明显的变形不均匀性。综合考虑,铸态Ni68Cu28Al 合金最佳加工温度控制在1000~1100 ℃,应变速率0.01 s-1左右。  相似文献   

10.
采用高温拉伸试验,得到TA9钛合金在800~920℃温度范围内和应变速率为0.001~0.125 s-1条件下的应力应变曲线,分析在拉应力条件下,变形温度、应变速率和流变应力三者之间的关系,构造了Arrhenius双曲正弦函数本构方程,并进行了应变修正,绘制出变形量为20%和50%时的热加工图,总结出不同变形条件下合金显微组织演变规律。结果表明:流变应力随变形温度的提高和应变速率的降低而降低,由本构方程计算出两相区变形激活能为569.453 kJ/mol,热加工图中的失稳区主要有四个区域,分别是在800~845℃和870~920℃时,应变速率在大于0.07 s-1和0.002~0.03 s-1处。此外,断裂位置显微组织中α相沿着合金变形的方向被拉长,α晶界变成锯齿状,这与动态回复过程中α向沿亚晶界破碎、分割和晶界突出有关。当变形温度一定时,等轴α晶粒尺寸随应变速率的提高而减小,当应变速率一定时,等轴α晶粒尺寸随温度的升高而变大。  相似文献   

11.
采用热模拟试验机对铸态Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si短时高温钛合金进行热模拟试验,研究了其高温变形行为。试验结果表明:该高温钛合金热变形对温度和变形速率敏感,随着应变速率降低和变形温度升高,真应力显著降低。利用高温压缩应力应变数据绘制了热加工图,分析结果显示:(α+β)相区的900~960℃、0.035~0.368 s-1和960~1 010℃、0.165~0.577 s-1;β相区的1 010~1 020℃、0.165~1 s-1为最适合加工的区域。经计算,(α+β)两相区的热变形激活能为316.229 kJ/mol,并构建了该相区内的本构方程。  相似文献   

12.
采用先进的热力模拟技术对高温合金NiCr22Mo9Nb合金进行热压缩试验,系统研究了合金在900~1100℃,0.01~5.00 s-1变形条件下的热塑性行为。根据热压缩实验数据,给出不同变形参数下该合金的流变应力曲线。考虑绝热温升效应对流变应力曲线的影响,通过外推法对高应变速率曲线进行绝热温升修正,基于修正后的流变应力曲线构建该合金Arrhenius型本构模型。根据动态材料模型推导该合金在不同应变下的加工图,并分析不同变形参数下该合金的变形组织演化规律。结果表明,该合金的流变应力曲线呈现动态再结晶软化特征;在高应变速率5.00 s-1下发生明显的绝热温升现象,并且随着变形温度的升高绝热温升效应减弱;该合金在900~1100℃时的热变形激活能为485.31k J·mol-1;结合该合金的热加工图和不同区域变形组织特征,合金的完全再结晶区域为变形温度T=1050~1100℃、应变速率ε=0.10~0.25 s-1,失稳区域为T=900~1100℃、ε=0.3~1.8 s-1,建议该合金的最佳热加工窗口为完全再结晶区域。  相似文献   

13.
为了研究热作模具钢5CrNiMoVNb的热变形行为,利用Gleeble3800热模拟试验机进行单道次热压缩实验,获得了应变速率为0.001~0.1 s-1和变形温度1 030~1 230℃条件下的高温流变应力曲线。应用双曲正弦函数构建了与应变有关的材料本构模型并验证,并基于动态材料模型构建了三维功率耗散图和三维失稳图,将二者叠加得到典型应变下的热加工图。结果表明,所有变形条件下的高温流变应力曲线均呈现典型动态再结晶特征,并且由于奥氏体基体析出强化相含量、动态再结晶体积分数的影响,流变应力随变形温度的降低或应变速率的增大而增大。基于5CrNiMoVNb钢的本构模型计算的流变应力值与实验值的相关性系数为0.992 7,较高的相关性系数表明建立的高温流变应力模型能够比较准确地预测合金的流变应力。此外,根据不同条件下的三维功率耗散图和三维失稳图可知,随着应变的增大,功率耗散峰值区向中温、高应变速率区域扩散,热变形失稳仅容易出现在低应变、低变形温度和高应变速率区域。真应变为0.8时,最佳的加工工艺参数范围为:变形温度为1 080~1 200℃,应变速率为0.01~0.1 s...  相似文献   

14.
6069铝合金的热变形行为和加工图   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟实验机在温度为300~450℃,应变速率为0.01~10 s?1条件下对6069铝合金进行热压缩实验,研究该合金的热变形行为及热加工特征,建立热变形本构方程和加工图。结果表明,6069铝合金热变形过程中的流变行为可用双曲正弦模型来描述,在实验条件下的平均变形激活能为289.36 kJ/mol。真应变为0.7的加工图表明合金在高温变形时存在2个安全加工区域,即变形温度为300~350℃、应变速率为1~10 s?1的区域和变形温度为380~450℃、应变速率为0.01~0.3 s?1的区域。适合加工的条件是变形温度为350℃,应变速率0.01 s?1。  相似文献   

15.
7085铝合金热变形的流变应力行为和显微组织   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机进行热压缩实验,研究7085铝合金在变形温度为350~470℃、应变速率为0.001~1 s?1条件下的流变应力变化规律和变形后的显微组织。研究表明:7085铝合金的流变应力随应变速率增大而增大,随变形温度升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述为ε=A[sinh(ασ)]nexp(?Q/RT),也可用Zener-Hollomon参数来描述,其参数A、α、n以及热变形激活能Q分别为2.722 54×1011s?1、0.016 03 MPa?1、6.259以及176.58 kJ/mol。随着温度升高和应变速率降低,合金的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

16.
GH710合金具有优异的耐高温性能,但由于高合金化、低塑性的特点,使其在热加工过程中易产生裂纹和流动失稳等缺陷,限制了合金的应用。采用真空感应+真空自耗重熔工艺制备铸锭,通过包套挤压方法,制备出高质量的GH710合金棒材。利用Gleeble-1500试验机开展等温压缩试验,研究了挤压态GH710合金在不同变形条件下的变形行为(变形温度(T)为1050~1150℃,应变速率(ε)为0.01~5 s-1,真实应变为0.9)。基于双曲正弦型Arrhenius方程建立挤压态GH710合金本构方程,以动态材料模型为基础构建了热加工图,通过盘形锻件锻造过程有限元模拟和物理试验所获得的时间-载荷曲线对比,验证合金本构模型的可靠性。结果表明:挤压态GH710合金的热激活能(Q)为1004801 J·mol-1;根据热加工图推荐了挤压态GH710合金最优热加工参数范围T为1100~1120℃,ε为0.01~0.03 s-1;采用挤压态GH710合金本构模型进行的仿真模拟与物理试验结果能较好的吻合;研究结果可为挤压态GH710合金的锻造工艺...  相似文献   

17.
利用Gleeble-3500热模拟试验机在变形温度900~1 200℃和应变速率0.01~10 s-1范围内,对40Cr钢试样进行压缩实验。研究了40Cr钢真应力-应变曲线特征,建立了峰值应力、应变速率和变形温度间的本构方程,并确定了40Cr钢热变形激活能为310.625 kJ/mol。研究结果显示:40Cr钢热变形时的流变软化机制为动态回复和动态再结晶;随着变形温度增加和应变速率减小,流变应力减小;试样的变形温度越高,应变速率越低,显微组织中的动态再结晶越完全,并且动态再结晶晶粒越容易长大。  相似文献   

18.
采用Glebble-1500D热模拟试验机,在350~500℃变形温度、0.01~10.00 s-1应变速率条件下进行等温压缩变形,研究40%Si Cp/Al复合材料(体积分数)的热加工性能。通过热变形真应力-真应变曲线分析复合材料的热变形规律,建立材料本构方程,利用动态材料模型计算出应变速率敏感指数和功率耗散效率系数,绘制出功率耗散图、失稳图及二维加工图。结果表明,应变速率和变形温度显著影响流变应力,应变速率一定时,变形温度升高,流变应力减小;在相同的变形温度下,随应变速率的增加,流变应力也随之升高。根据加工图可知,在高温高应变速率条件下,材料的功率耗散效率系数大,说明该变形区域发生了组织转变;应变对失稳区域和加工区域影响不大,功率耗散效率系数随应变的增加而增大。40%Si Cp/Al复合材料建议热加工条件为变形温度436~491℃,应变速率0.04~9.97 s-1。  相似文献   

19.
高氮奥氏体不锈钢高温热塑性差,需要掌握其可控成型参数。以1Cr22Mn16N高氮奥氏体不锈钢为实验材料,采用Gleeble 3800热模拟实验机进行热压缩实验,探究了其在不同变形温度(850~1 100℃)和应变速率(0.001~10 s-1)下的热变形行为。基于动态材料模型构建了1Cr22Mn16N的本构方程和热加工图,确定了最佳热加工参数,并结合EBSD分析了材料变形过程中的组织演化行为。研究结果表明,1Cr22Mn16N的热压缩流变应力随变形温度的升高和应变速率的降低而降低,沿晶界发生的不连续动态再结晶是其主要软化机制。通过计算得到高氮奥氏体不锈钢高温变形表观活化能(Q)为350.9 kJ/mol,并建立了Arrhenius本构关系。热加工图表明,1 050~1 100℃,0.001~0.1 s-1为其最佳热加工窗口。通过微观组织观察发现,随着变形温度的升高和应变速率的降低,晶粒尺寸逐渐均匀。研究结果可为1Cr22Mn16N不锈钢锻造、轧制等高温热变形工艺的制定提供理论参考。  相似文献   

20.
王玉  姚瑶  田玉新 《特殊钢》2024,(2):96-100
使用热模拟压缩试验仪器,设置850~1 150℃不同应变温度和0.1~10 s-1应变速率等热变形参数进行试验,通过金相显微镜、热模拟试验等设备对合金进行组织形貌表征,结合热模拟压缩试验应力应变曲线及合金组织形貌进行分析,系统性研究4J32超因瓦合金(Fe-32Ni-4Co)在850~1 150℃高温热变形行为及组织形貌演变过程。研究发现,4J32超因瓦合金在900℃以下热变形过程不发生动态再结晶,且合金中存在大量的变形晶粒组织。当热变形温度大于1 050℃时,合金开始发生动态再结晶,且应变速率越快其动态再结晶程度越高。研究结果表明,超因瓦合金最优的热变形温度>1 100℃,应变速率为10 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号