首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
郭帅  朱航宇  周杰  董帅  梁印 《钢铁》2022,57(7):63-72
 非金属夹杂物在加工过程中往往容易引起裂纹的萌生和扩展,为了明确典型非金属夹杂物对低密度钢性能的影响,采用Abaqus有限元软件分析了低密度钢中典型Al2O3、MnS、AlN、TiN单一夹杂和Al2O3-AlN、AlN-MnS复合夹杂及附近钢基体的应力场,研究了非金属夹杂物类型、尺寸、方向、分布等因素对低密度钢应力场的影响。结果表明,非金属夹杂物的变形能力、形状和尺寸显著影响低密度钢中应力场分布,夹杂物及其附近钢基体的最大应力值由大到小依次为TiN、AlN、Al2O3和MnS。夹杂物尺寸越大,应力场范围和最大应力值也越大。夹杂物长轴与载荷的夹角会造成裂纹萌生位置和传播方向发生变化,TiN和AlN夹杂物尖角位于载荷方向时可缓解夹杂物引起的应力集中。此外,团聚状的夹杂物易引起应力集中,夹杂物间距越小,引起的应力富集越大。对于复合夹杂物而言,Al2O3-AlN内部的Al2O3夹杂会阻碍复合夹杂物变形,引起应力值升高,增加AlN夹杂的危害性;而AlN-MnS复合夹杂物外部的MnS可以适度缓解内部AlN尖角处引起的应力集中,降低AlN夹杂的危害性。因此,在冶炼过程中应尽量控制脆性夹杂物数量和尺寸、避免聚集状AlN夹杂物的生成,通过工艺调控实现硫化物对AlN夹杂的完全包裹等措施可降低夹杂物对低密度钢的危害性。  相似文献   

2.
 为了研究Fe-23Mn-xAl-0.7C(x=0.87~6.76)低密度钢中非金属夹杂物形貌特征及形成机理,通过SEM-EDS检测了钢中夹杂物形貌和成分,并借助INCA Feature夹杂物自动分析软件分析了钢中夹杂物尺寸分布、数量密度和面积分数等参数。研究发现,低密度钢中夹杂物尺寸以1~5 μm为主。w([Al])为0.87%时,钢中主要夹杂物为MnS、MnO、Al2O3和Al2O3-MnS,夹杂物数量较少,但尺寸大于7 μm的夹杂物所占比例较大,平均尺寸为3.45 μm;w([Al])为3.28%时,主要夹杂物为AlN、Al2O3、MnS以及AlN-MnS、AlN-Al2O3-MnS复合夹杂物,外包裹MnS尺寸较小,小尺寸夹杂物居多,平均尺寸为2.63 μm;w([Al])为6.76%时,钢中夹杂物以AlN或AlN-MnS为主,且AlN夹杂呈聚集状,夹杂物平均尺寸为2.93 μm。此外,通过FactSage 7.3热力学计算讨论了Fe-23Mn-xAl-0.7C低密度钢中夹杂物析出时机及演变过程,为试验结果提供理论解释。  相似文献   

3.
使用10 kg真空感应炉Al脱氧冶炼较高S含量超低氧高强度钢,钢中T[O]降到0.0010%,S的质量分数为0.0190%.采用ASPEX explorer全自动扫描电镜对钢中非金属夹杂物进行检测,发现98%非金属夹杂物都是弥散分布的MnS和MnS+Al2O3复合夹杂物.MnS夹杂物棱角分明,从形貌特征来看应属于第Ⅲ类硫化物.MnS+Al2O3复合夹杂物以Al2O3为核心,外层包裹MnS,其数量约占9%~32%;作为核心的Al2O3平均直径为1.5μm.其生成过程可描述为:凝固过程中,小尺寸Al2O3被推至固液两相区,而选分结晶作用使得钢中的Mn和S在凝固前沿富集,并以Al2O3作为异质形核质点析出MnS夹杂物.对凝固过程中Al2O3的推动和捕获行为进行了相关计算.计算结果表明:直径小于4μm的Al2O3可被推动,并作为MnS的异质形核质点.   相似文献   

4.
为了尽可能的去除钢中大颗粒的夹杂物, 在实验条件下通过向GCr15轴承钢中添加适量镁、稀土对夹杂物进行改性, 并利用Aspex夹杂物自动分析仪和扫描电镜对钢中改性后的夹杂物尺寸、类型、形貌等进行了观察、分析, 研究了稀土-镁复合处理对夹杂物的影响规律.研究结果表明, 对轴承钢中加入微量镁处理, 可将未进行镁处理钢中的MnS-Al2O3、MnS、Al2O3夹杂改性为以含硫、镁复合夹杂物为主, 同时包含少量Al2O3、镁铝尖晶石夹杂.进一步采用稀土-镁复合处理后, 钢中的夹杂物转变为主要以含Re-S-O夹杂物为主, Al2O3、MnS、镁铝尖晶石夹杂逐步消失, 且夹杂物成球状分布, 绝大多数夹杂物在5 μm以下.稀土-镁复合处理轴承钢后, 10 μm以上的大颗粒夹杂物大大降低, 钢中的夹杂物明显得到细化.钢中镁含量不变时, 随着稀土含量的增加, 大颗粒夹杂物比例明显下降.而在稀土含量相近的情况下, 增加钢中的镁含量也有利于大颗粒夹杂物的去除.稀土-镁的相互作用进一步促进了夹杂物的细化.   相似文献   

5.
Q235钢中夹杂物演变规律和生成机理分析   总被引:1,自引:0,他引:1  
 为了更好地控制Q235钢中非金属夹杂物的种类和数量,提高钢的冲击韧性,采用自动扫描电镜分析了Q235钢中非金属夹杂物在LF精炼、中间包和连铸坯中成分和形貌的演变规律。采用FactSage热力学软件对钢中各类夹杂物的生成机理进行了分析。研究发现,钢中非金属夹杂物的演变规律为均相的SiO2-MnO夹杂物→均相的SiO2-Al2O3-MnO-TiOx夹杂物→双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物→多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。样品冷却过程中均相的SiO2-MnO夹杂物发生相变析出纯SiO2导致在LF精炼初期钢中出现双相SiO2-MnO类夹杂物。加入的硅钙钡合金中铝含量较高,导致液态夹杂物在钢液中析出MgO·Al2O3,以及在LF出站钢样品中出现双相的Al2O3-SiO2-CaO包裹着MgO·Al2O3类夹杂物。含钛的夹杂物在连铸坯凝固冷却过程会析出纯的Ti3O5,并且钢中还会析出MnS析出相,因此连铸坯中存在多相的TiOx-SiO2-Al2O3-CaO-MnO-MnS夹杂物。  相似文献   

6.
高速重轨钢中尖晶石夹杂物的形成及控制   总被引:1,自引:0,他引:1  
储焰平  谌智勇  刘南  张立峰 《钢铁》2020,55(1):38-46
 高速重轨钢采用无铝脱氧工艺,但是钢中常发现大颗粒纯的MgO-Al2O3夹杂物,严重影响产品质量。为了明确高速重轨钢中尖晶石夹杂物的来源,进一步控制重轨钢中夹杂物,通过对重轨钢拉伸断口进行分析,结合水口结瘤物分析、热力学计算及典型夹杂物分析,系统研究了高速重轨钢中尖晶石夹杂物的形成机理。结果表明,重轨钢中的尖晶石夹杂物分为单独存在的尖晶石和钙铝酸盐包裹的尖晶石两类。其中钙铝酸盐包裹的尖晶石为CaO-SiO2-Al2O3-MgO复合夹杂物在降温冷却过程中析出,析出温度与夹杂物中Al2O3和MgO质量分数有关;单独存在的小尺寸尖晶石夹杂物为钢液凝固冷却过程中析出,与钢液成分有关。此外,研究还表明,水口结瘤也是重轨钢中出现大颗粒镁铝尖晶石夹杂物的重要原因之一。因此,严格控制合金辅料中Mg、Als等杂质元素质量分数,防止钢液发生二次氧化、降低耐火材料侵蚀等,尽可能降低夹杂物中的Al2O3和MgO质量分数,对控制重轨钢中尖晶石夹杂物,提高产品质量至关重要。  相似文献   

7.
沈昶  陆强  郭俊波  杨峥 《钢铁》2021,56(12):62-67
 为提高中高碳钢产品的抗疲劳性能,利用中高碳钢的成分特点,研究开发了中高碳铝镇静钢中MnS以Al2O3为形核质点的非均质形核工艺,将钢中Al2O3脆性夹杂用塑性MnS包裹,解决了疲劳应力钢因脆性非金属夹杂引起的疲劳断裂问题。通过对微细、弥散Al2O3夹杂生成条件、MnS非均质形核析出热力学条件的研究,开展了钢中关键元素的成分设计、精炼及连铸集成工艺的设计与开发。工业实践表明,低活度氧条件下进行铝终脱氧可以形成3~5 μm微细弥散的Al2O3夹杂,并作为非均质形核的核心在二次枝晶晶间的凝固末端析出弥散、细小的粒状MnS;通过梯度脱氧、真空碳脱氧以及保护浇铸等操作可以有效稳定控制钢中全氧含量,提高钢水洁净度,成品T[O]质量分数平均为0.000 618%,较原工艺的0.000 739%降低了16%;成品的夹杂物中MnS及MnS包裹Al2O3夹杂所占比例大于96%,与世界领先产品的夹杂物控制水平相当,考虑到产品使用过程中Al2O3夹杂外部的MnS包裹层必须足够厚,塑性夹杂才能起作用,建立了MnS “有效包裹率” 的概念,当硬相夹杂物被MnS包裹且硬相夹杂物的最大半径不大于MnS包裹部位半径的1/2时,认为MnS对硬相夹杂物实现了“有效包裹”;MnS塑性夹杂工艺可明显提高材料的疲劳性能,成品的平均断裂韧性为83.47 MPa·m1/2,较原工艺的67.31 MPa·m1/2提高了24%。  相似文献   

8.
曾溢彬  包燕平  赵家七  王敏 《钢铁》2022,57(8):69-77
 某钢厂生产的55SiCr弹簧钢采用硅锰脱氧工艺,但在其冶炼过程中存在大量尖晶石类夹杂物,对最终产品的性能十分不利。尖晶石等硬、脆性夹杂物是弹簧在服役过程中疲劳断裂的主要因素之一,因此为明确弹簧钢中该类夹杂物的来源,进而控制并去除钢中非金属夹杂物,通过夹杂物自动分析、扫描电镜和能谱分析等手段,结合FactSage热力学计算分析了55SiCr弹簧钢冶炼过程夹杂物的演变及主要夹杂物的形成机理。分析结果表明,LF精炼后钢中夹杂物数量大幅上升,且其平均成分偏向SiO2-Al2O3-CaO三元相图中高熔点区域;夹杂物主要以SiO2·Al2O3·CaO·MgO为主,多表现为钙铝酸盐包裹或半包裹尖晶石的复合夹杂物类形态,此外还有少量单独的尖晶石夹杂物存在于钢中。对于上述夹杂物的形成及演变进行热力学计算,结果表明,钢液中Mg、Al含量上升将导致钢中析出大量尖晶石夹杂物,并与液态夹杂结合形成含镁复相夹杂物;同时,钢液成分的变化也会导致精炼过程生成的SiO2·Al2O3·CaO·MgO类夹杂物中MgO、Al2O3含量大幅增加,在复合夹杂物内部析出尖晶石相。因此,为减少硅锰脱氧弹簧钢中尖晶石类硬脆性夹杂物的生成,需要严格控制钢中Mg、Al含量,尽可能降低夹杂物中MgO、Al2O3含量,以实现对弹簧钢中非金属夹杂物的塑性化控制。  相似文献   

9.
为了探讨钢中细小夹杂物的形成机制,采用扫描电镜和能谱仪表征了钢中夹杂物的形貌、尺寸、成分及数量,理论计算了脱氧产物的生成优势区图,讨论了夹杂物长大的影响因素.钢中夹杂物的组成以MgO-Al2O3-TiOx为核心,表面包裹析出MnS,钢液中未发现单独的Al2O3和TiOx夹杂;夹杂物的形貌为近球形,平均尺寸为1μm左右,数量在1000 mm-2以上.镁含量较高的钢中含有少量以MgO-Al2O3和MgO为核心的夹杂物,不利于夹杂物的球形化,镁含量宜控制在50×10-6以下.镁的脱氧能力强,形核临界尺寸小、形核数量多以及钢液中镁、铝和钛复合脱氧的高熔点产物的特性有效地控制了钢中夹杂物的扩散与碰撞长大趋势.   相似文献   

10.
解晓辉  刘玉龙  李光强  陈新元  朱诚意 《钢铁》2021,56(11):122-134
 为了研究稀土处理对取向硅钢中夹杂物特征的影响,借助FE-SEM/EDS和图像分析软件分析了稀土处理前后热轧取向硅钢夹杂物的成分、形貌、尺寸和数量并解明了影响机理。研究结果表明,未添加稀土的试验钢中,典型的夹杂物为形貌不规则的MnS-AlN复合夹杂物以及片状或条状的AlN夹杂物;添加稀土后,夹杂物则以球状或椭球状的CeS-LaS、CeS-LaS-AlN、Ce2O2S-La2O2S复合夹杂物和AlN夹杂物为主。稀土处理有效改善了夹杂物形貌,特别是大尺寸氮硫化物的形貌特征,未检测到MnS类夹杂物。尽管加入较多的稀土后夹杂物数量增加,大于5 μm夹杂物的平均尺寸增大量明显(增大0.89 μm),但整体夹杂物的平均尺寸仅增大了0.40 μm。由于稀土的脱硫作用,且稀土硫化物与AlN晶格常数差异大,钢中氮硫化物的数量密度和面积分数降低。稀土降低了AlN在钢中的平衡溶度积,使AlN夹杂物提前析出,导致AlN夹杂物数量增多,且先析出的AlN出现一定程度的长大。稀土对MnS在凝固前沿的析出有抑制作用,有利于热轧和常化过程析出更多用作抑制剂的MnS和AlN。在充分脱氧的取向硅钢中适当降低钢中酸溶铝含量,调整稀土在钢中的用量,在不增加钢中大尺寸夹杂物含量的前提下,发挥MnS、AlN抑制剂作用和Ce-La合金化作用。此外,通过稀土处理控制钢中夹杂物形貌特征,将有望达到改善钢的热轧组织和轧制加工性能的目的。  相似文献   

11.
试验的铸态取向硅钢(/%:0.044~0.056C,3.12~3.32Si,0.08~0.11Mn,0.002~0.008S,0.0029~0.0291Als,0.0062~0.0109N)由30 kg高频真空感应炉熔炼。通过场发射扫描电子显微镜/能谱仪(FE-SEM/EDS)研究结果表明,0.0029%Als钢中氧化物主要为SiO2,存在片状、棒状及近似球状的独立MnS,未发现含铝的氧化物或氮化物;0.0090%Als钢中出现以Al2O3为主的复合氧化夹杂物,存在MnS与AlN的复合析出物。钢中Als增加,复合析出物多呈簇状发展。氧化物容易成为MnS-AlN复合析出的核心,钢中Als含量越低,夹杂物中的MnS含量越高;作为核心的氧化物夹杂的尺寸越小,形成的复合夹杂物的形状越规则,尺寸也越小。热力学计算结果表明,钢中Als含量主要影响了钢中氧化物夹杂的组成和AlN的析出温度及析出量。  相似文献   

12.
结合高温模拟实验和热力学分析,探讨了稀土对高强车轮钢中夹杂物类型及尺寸分布的影响,并与传统的钙处理钢进行了对比。研究结果表明,铝脱氧车轮钢经钙处理后夹杂物主要为Al2O3、MnS、(Mn, Ca)S和CaO-Al2O3以及Al2O3-(Mn, Ca)S和CaO-Al2O3-CaS包裹型复合夹杂物;与钙处理钢对比,车轮钢经稀土处理后,钢中Al2O3夹杂物数量减少,MnS和(Ca, Mn)S夹杂物消失,生成了近球形的Ce2O2S、Ce2O3夹杂,夹杂物尺寸显著减小;随稀土含量的增加[w(Ce)=0.0160%~0.0250%],不大于5μm的夹杂物数量占比由91.0%提升至99.8%,稀土细化夹杂物效果显著。热力学分析表明:在1600℃条件下,随着车轮钢中w(Ce)由0增加至0.0300...  相似文献   

13.
于会香  潘明  杨德新 《钢铁》2020,55(6):46-53
 为深入了解超低碳IF钢在脱氧合金化过程中夹杂物的行为,用高温电阻炉开展试验模拟实际生产中铝脱氧钛合金化过程,通过密集取样,详细研究了该过程中夹杂物的转变。研究发现,加铝前,钢中夹杂物主要为球形的FeOx;加铝后,最先生成浅灰色的球形Al2O3,然后向椭球形或单体块状Al2O3转变,随后迅速聚合形成不规则状Al2O3,最终聚合成簇群状Al2O3,整个过程大约在加铝后2 min内完成;加钛后,钢液中形成3种类型的Al-Ti复合类夹杂物,但在加钛大约4 min后便会转化为稳定的Al2O3相。整个脱氧合金化过程中,氧含量和夹杂物的量呈下降的趋势,钢液的洁净度逐渐提高。  相似文献   

14.
为了研究铝脱氧不锈钢开浇过程中二次氧化对钢水洁净度和夹杂物演变的影响,实现钢中夹杂物的有效控制,分别在LF精炼出站、开浇过程中不同时刻取样,采用扫描电镜、ASPEX自动分析仪、热力学计算等不同方法研究了铝脱氧不锈钢中夹杂物的形貌、成分、数量和尺寸分布,确定了铝脱氧不锈钢开浇过程中夹杂物的演变行为和对应机理。研究结果表明,开浇过程钢中氧氮质量分数、夹杂物数密度变化规律类似,20 min时分别增加至7.4×10?5、0.0674%、17.1 mm?2,此后随着浇铸过程进行逐渐降低;LF精炼出站时钙处理改性夹杂物效果较好,其类型主要为CaO?Al2O3?SiO2?MgO,开浇过程中二次氧化降低了钙处理操作的作用效果,20 min时夹杂物类型转变为MnO?Al2O3?SiO2?CaO复合夹杂物,浇铸约60 min时,连铸过程中钢水的洁净度基本达到稳定,此时夹杂物类型重新转变为CaO?Al2O3?SiO2?MgO;二次氧化使得钢液中氧质量分数较高,促进了MnO?Al2O3-SiO2?CaO夹杂物的生成,而钢中大尺寸的CaO?Al2O3?SiO2?MnO?(MgO)夹杂物主要通过夹杂物间的碰撞聚合形成;凝固过程中随着温度的降低,促进了MgO?Al2O3尖晶石相和CaO?2MgO?8Al2O3相的析出,提高了夹杂物中Al2O3组分的含量。   相似文献   

15.
李荣  孟倩  李涛  谭敏  陈晨  张福成 《中国冶金》2023,(12):66-78
高锰钢辙叉是铁路运输系统的关键部件,对铁路安全运行具有重要影响。钢中夹杂物严重影响钢的性能,稀土改性夹杂物是控制夹杂物的有效手段。基于热力学和第一性原理计算以及试验研究,系统分析了铁路辙叉用高锰钢稀土处理前后夹杂物的演变及其对钢性能的影响。热力学计算结果表明,未添加稀土Y时,高锰钢中主要的夹杂物为MnS和Al2O3;添加稀土Y后,高锰钢中的MnS和Al2O3转变为Y2S3、YS、YAlO3、Y2O3和Y2O2S;当Y质量分数为0.03%时,夹杂物全部转变为稀土夹杂物。第一性原理计算结果表明,高锰钢中夹杂物形成并稳定存在的顺序为Y2O3>YAlO3>Y2O2S>Al2O3>Y...  相似文献   

16.
焦魁明 《钢铁》2020,55(12):39-45
 为了探究镁处理对40Cr铝镇静钢中夹杂物的影响,在120 t钢包内进行了镁处理工业试验。采用FactSage热力学软件计算了在试验炉钢水成分条件下夹杂物的稳定区域图,镁处理夹杂物的改质路径为Al2O3→Al2O3+MgO·Al2O3→MgO·Al2O3→MgO+ MgO·Al2O3→MgO+MgS;结合金相显微镜和ASPEX-explorer自动扫描电镜分析了镁对40Cr铝镇静钢中夹杂物的形态、尺寸及成分的影响。结果表明,镁处理后,铸坯中夹杂物尺寸及数量较未加镁的试样有明显减少,尺寸主要分布在0~3 μm,夹杂物密度和夹杂物的长宽比明显减小;钢中夹杂物等效直径为0~3 μm的比例大于未添加镁的,这说明镁处理对40Cr铝镇静钢中夹杂物有弥散化及形貌控制的效果。镁处理后的40Cr铝镇静钢中夹杂物主要为MnS包裹MgO·Al2O3为核心的复合夹杂物,而对比炉钢中夹杂物主要为MnS、Al2O3-MnS以及钙铝酸盐类夹杂物。  相似文献   

17.
在某企业生产的中高牌号DG47A(Fe-2%Si-0.36%Al-0.26%Mn)无取向硅钢热轧板中发现有长度达50μm左右的团簇状镁铝尖晶石夹杂物,这会影响后续加工过程的产品质量。通过对BOF→RH→中间包→铸坯进行取样分析和热力学计算研究其冶炼流程中夹杂物的演变规律。采用扫描电子显微镜和能谱仪(SEM-EDS)对夹杂物的形貌、尺寸和种类进行分析,通过热力学计算了镁铝尖晶石夹杂物的生成条件,使用热力学计算软件PANDAT计算了该钢种凝固过程析出相变化规律。结果表明,RH脱碳后,夹杂物为SiO2;RH加铝3 min后,有Al2O3和少量SiO2夹杂物;在RH加硅铁、纯锰合金化后,出现Al2O3-MgO和含MnS的复合夹杂物;在加入脱硫剂后,出现含CaS的复合夹杂物;RH破空后,不再有单相Al2O3夹杂,出现Al2O3-MgO-MnS夹杂物,并发现少量含MgS的夹杂物。中...  相似文献   

18.
刘南  成功  任英  张立峰 《工程科学学报》2022,44(12):2069-2080
大尺寸CaO?Al2O3类夹杂物容易引起轴承钢疲劳失效,大尺寸CaO?Al2O3类夹杂物的控制是生产高端GCr15轴承钢的关键因素之一。精炼过程中合金引入杂质元素、渣精炼和精炼过程中卷渣是铝脱氧轴承钢中大尺寸CaO?Al2O3类夹杂物的主要潜在来源。硅铁合金通常用来提高轴承钢的淬火和抗回火软化性。本文通过实验室实验、样品分析和热力学计算,研究了硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响。硅铁合金主要由深色的硅相和浅色的硅铁相组成,钙元素在硅相和硅铁相的界面处以金属化合物形式存在。研究发现,加入硅铁合金后,钢中总钙(T.Ca)含量增加,钢中的Al2O3和MgO·Al2O3夹杂物被改性为CaO?Al2O3类夹杂物,夹杂物尺寸随着夹杂物中CaO含量增加而减小,钢中并未生成大尺寸CaO?Al2O3类夹杂物。随着钢中T.Ca含量增加,夹杂物平均尺寸降低,钢中T.O含量增加,表明硅铁合金中金属钙元素不会直接引起钢中大尺寸CaO?Al2O3类夹杂物的生成。但是生成的小尺寸固相CaO?Al2O3类夹杂物在水口处粘附结瘤,结瘤物脱落后会成为钢中大尺寸CaO?Al2O3类夹杂物的来源之一。   相似文献   

19.
对超低碳IF钢钛合金化后的非金属夹杂物进行了分析,研究发现钛合金化后的夹杂物主要为Al2O3和Al?Ti?O夹杂物,没有发现纯TiOx夹杂物。钢中生成的Al?Ti?O复合夹杂物从形貌上均可分为七种类型,四种具有Al2O3外层,另外三种无Al2O3外层。钛合金化后,钢中瞬态生成了大量无Al2O3外层的Al?Ti?O夹杂物,随后夹杂物表面生成Al2O3外层,导致有Al2O3外层的Al?Ti?O夹杂物数量比例逐渐增加至78.0%。热力学计算结果表明,随着钢中钛含量的增加,夹杂物的转变顺序为固态Al2O3→液态Al?Ti?O→固态Ti2O3。确定了Al?Ti?O夹杂物的生成机理过程分为两步:精炼过程钛合金化后,当钢液局部区域的钛的质量分数高于0.42%时,[Ti]与钢液反应瞬态生成Al2O3?TiOx或TiOx;随着精炼过程中钛元素的混匀,含TiOx夹杂物被钢中[Al]还原,Al2O3?TiOx和TiOx夹杂物逐渐转变,在夹杂物表面生成Al2O3。   相似文献   

20.
超低碳钢是一种重要的汽车用钢材料, 钢中通常添加钛元素, 使其形成析出物, 提高钢材的深冲性.然而钛元素作为一种脱氧能力较强的元素, 进入钢液中通常首先形成氧化物.为了减少含钛氧化物夹杂的生成, 基于"转炉-RH-连铸"的超低碳钢生产流程, 对RH精炼过程进行系统取样, 分析了铝脱氧剂加入后及合金化元素钛加入后的氧、氮气体含量变化及夹杂物特征变化, 并使用FactSage热力学计算软件对Fe-Al-Ti-O夹杂物稳定相图进行计算.研究结果显示, 含钛类氧化物夹杂通常以Al2O3类夹杂物作为形核质点, 对其形成包裹状夹杂物.若避免含Ti夹杂物的生成, 当钢中Ti质量分数为0.1%时, 钢中溶解Al质量分数应在0.01%以上.对含钛氧化物的生成及长大流程进行研究, 通过对Al2O3夹杂物及Ti2O3夹杂物粗化率的计算及附着功的比较可知, Ti2O3夹杂物在1600℃时的熟化生长速率较Al2O3较大且Ti2O3夹杂物与Al2O3夹杂物相比不容易相互碰撞融合并从钢液中去除.若提高精炼过程中的氧化物夹杂物去除率, 应严格控制含钛氧化物类夹杂物的生成.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号