首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
用碳热还原氮化法处理含钛高炉渣   总被引:3,自引:0,他引:3  
含钛高炉渣的综合利用一直是重要的研究课题。为了使渣中的钛氧化物经还原氮化处理后转变为氮化钛,并使其颗粒长大,以便进行冶金选矿,将含钛高炉渣配加石墨粉并通氮气,在1360~1480℃的温度区间进行还原氮化处理,然后观察氮化钛的形态特征及颗粒的大小。结果表明:该工艺可使炉渣中的钛选择性地富集于氮化钛相;另外,改变工艺条件可促使氮化钛颗粒长大。  相似文献   

2.
3.
湿式弱磁选从含钛高炉渣中提取金属铁的研究   总被引:1,自引:0,他引:1  
基于攀钢高钛型含钛高炉渣综合利用现状,提出“磁选收铁-活化脱铝—酸浸提钛”的技术途径,以期实现含钛高炉渣中Fe、Al、Ti等有价元素的综合回收.采用X射线衍射仪和矿相显微镜研究了含钛高炉渣中矿物相的组成和金属铁在含钛高炉渣中的赋存状态.采用单—弱磁选和阶段磨矿-阶段弱磁选的工艺回收含钛高炉渣中的金属铁.结果表明:高炉渣中的主要矿物相为钙钛矿、透辉石和镁铝尖晶石,金属铁多以球粒状分布于透辉石等矿物颗粒中,含少量磁铁矿.采用阶磨、阶选的工艺在节约磨矿成本的同时可获得铁精矿的品位为63.5%,回收率为64.2%,有效回收了高炉渣中的金属铁,并为后续工艺中活化脱铝和酸浸提钛创造了有利条件.  相似文献   

4.
李青  雷清如 《钢铁钒钛》1990,11(3):45-49
实验和理论论证表明,在高钛高炉渣中,除了钛的氮化物,碳氮化物外,不存在其它的含氮化合物改变了以往的某些观点,为快速、准确测定高钛高炉渣中的氮化钛提供了新的理论根据。  相似文献   

5.
高钛渣提取碳氮化钛的研究   总被引:2,自引:1,他引:1  
在热力学分析基础上,以攀钢高钛渣为基准配制的TiO2-CaO-SiO2-Sl2O3-MgO五元合成高钛渣为主要原料,采用碳热还原法制取碳氮化钛.确定了碳化处理过程中不同气氛(氩气,氮气)下的产物,采用X-射线衍射仪和扫描电镜研究了产物的相组成和显微结构,证实了在氩气气氛下,产物主要为TiC;在氮气气氛下,产物主要为Ti(C,N);氩气气氛下碳化钛的粒度比同一实验条件氮气气氛下碳氮化钛的粒度要小2~4μm.  相似文献   

6.
中国超过50%钛资源在高炉冶炼过程中进入炉渣,渣中TiO2的质量分数高达20%~30%,是一种高附加值二次资源,但在对该资源综合利用过程中,始终未能解决经济提取、硅钛难分,二次污染严重等问题.在热力学理论指导下进行真空碳热还原-酸浸联合工艺处理含钛高炉渣制备TiC研究.研究表明,碳热还原温度越高或相同温度下真空度越高越有利于炉渣中各成分还原;随着真空度增加碳热还原温度要求降低;当温度达到1 573K,真空度为1 Pa,可将SiO2还原得到具有高蒸气压的SiO、MgO被还原为Mg蒸气而离开体系,可实现渣中硅镁与钛彻底分离;真空碳热还原含钛高炉渣制备TiC的最佳条件:还原温度1673 K,炉渣粒度75μm占80%,渣碳质量比100∶38.  相似文献   

7.
以钛精矿和石墨为原料,在氮气气氛下通过碳热还原法制备出碳氮化钛(Ti CN)粉体。结合XRD、SEM、化学成分分析和TG-DSG综合热分析研究了配碳量及反应温度对钛精矿碳热还原进程的影响。研究结果表明,配碳量的增加影响逐级还原反应温度以及反应总失重,当配碳量达到23%时碳氮化钛产物中出现游离碳。钛精矿碳热还原过程中铁氧化物优先还原,钛氧化物经逐级还原形成Ti CN,还原顺序为Ti O2→Ti4O7→Ti3O5→Ti N→Ti(C,N,O)→Ti CN。得到的碳氮化钛粉体呈微米级不规则形状。  相似文献   

8.
9.
含钛高炉渣性能的研究进展   总被引:1,自引:0,他引:1  
高炉渣是保证高炉冶炼顺利进行的决定性因素之一.国内外大量学者对含钛高炉渣的物理化学特性进行了研究.对高钛型(TiO2的质量分数>20%)、中钛型(TiO2的质量分数为5%~20%)、低钛型(TiO2的质量分数<5%)炉渣的物化特性的异同点进行了归纳和对比,介绍了含钛高炉渣在高炉生产实际中的应用概况,并指出了今后的研究方...  相似文献   

10.
基于攀钢高钛型含钛高炉渣综合利用现状,提出"磁选收铁-活化脱铝—酸浸提钛"的技术途径,以期实现含钛高炉渣中Fe、Al、Ti等有价元素的综合回收。采用X射线衍射仪和矿相显微镜研究了含钛高炉渣中矿物相的组成和金属铁在含钛高炉渣中的赋存状态。采用单一弱磁选和阶段磨矿-阶段弱磁选的工艺回收含钛高炉渣中的金属铁。结果表明:高炉渣中的主要矿物相为钙钛矿、透辉石和镁铝尖晶石,金属铁多以球粒状分布于透辉石等矿物颗粒中,含少量磁铁矿。采用阶磨、阶选的工艺在节约磨矿成本的同时可获得铁精矿的品位为63.5%,回收率为64.2%,有效回收了高炉渣中的金属铁,并为后续工艺中活化脱铝和酸浸提钛创造了有利条件。  相似文献   

11.
为了实现攀钢含钛高炉渣中钛组分的有效回收,对其进行了化学组分的调整和高温选择性析出处理,在此基础上,进行了改性渣中主要矿物的浮选、人工混合矿浮选、改性渣浮选等研究。结果表明,辛基异羟肟酸(OHA)对三种矿物表现出一定的捕收能力和选择性;捕收剂与抑制剂用量对浮选效果未有明显效果,且耗酸量较大;通过SEM和EDX分析表明,各矿物表面被针状硫酸钙覆盖导致捕收剂与抑制剂对矿物的作用效果减弱,因此需要寻求较为有效的表面处理剂对改性渣处理后再进行浮选分离。  相似文献   

12.
以攀枝花高钛型高炉冶金渣为主原料制备微晶石材,以Ca O-Al_2O_3-Si O_2玻璃体系为基础,采用DSC、XRD、SEM等分析技术,研究不同晶核剂体系对高钛型矿渣玻璃的析晶特性、组织结构和性能的影响。结果表明,以攀枝花高钛型高炉渣为主原料,在高添加比(60%)情况下制备微晶石材是可行的,渣中适量的Ca O和较多的TiO_2可以形成稳定的基础玻璃,通过引入Fe/Cr复合晶核剂或者Ti/Zr复合晶核剂,可促进基础玻璃的析晶过程,获得较高的结晶度;其中以F、S为晶核剂的玻璃析晶能力较差。获得的微晶石材以辉石、榍石等为主要晶相,组织结构受晶核剂类型的影响略有差异,该类型矿渣微晶石材性能优异,抗弯强度达90 MPa,耐酸碱性能远优于普通高炉渣微晶石材。  相似文献   

13.
非水淬高钛型高炉渣的综合利用研究   总被引:1,自引:1,他引:0  
研究了用盐酸酸解非水淬高钛型高炉渣,去除铁、铝、镁、钙等可溶性杂质,制得富钛渣料以及从酸解液中回收铁、铝及Cl^-等有价元素。结果表明:在盐酸浓度7mol/L、温度90℃、酸渣质量比1.7:1、反应时间7h条件下,可制备TiO2质量分数超过45%的富钛渣料;用双氧水将酸解液中的Fe^2+氧化成Fe^3+后,用氨水调节pH为2.8~2.9,可沉淀Fe(OH)3,铁沉淀率≥76%;继续用氨水调pH约为4.8时,可沉淀Al(OH)3,铝沉淀率≥86%;采用低温多次蒸发冷析结晶法回收废液中的NH4Cl,3次蒸发冷析结晶后可制得纯度98%的NH4Cl,其回收率在75%以上。  相似文献   

14.
以铁品位35.59%的山东某地的铜渣和山东、甘肃两地的四种高炉灰为原料,进行共还原—磁选回收铁工艺试验,研究了高炉灰作为共还原—磁选工艺还原剂的可行性。结果表明,焙烧体系中仅加入高炉灰时,铜渣与高炉灰共还原—磁选所得还原铁指标均较差;当加入氟化钙时,还原铁中铁品位和铁回收率均大于90%,指标较好,实现了铜渣与高炉灰中铁资源的高效回收。高炉灰种类及用量、氟化钙用量、还原温度、还原时间及磨选条件均对还原铁指标有影响,在铜渣∶G1∶氟化钙质量比为100∶30∶15、共还原温度1250℃、共还原时间60 min的条件下焙烧,然后在磨矿细度-74μm占51.87%、磁场强度80 kA/m条件下磁选,可获得铁品位和铁回收率分别为92.06%和92.65%的直接还原铁。该工艺可以为铜渣和高炉灰的综合利用提供参考。  相似文献   

15.
邹爽  王辉  杨和 《钢铁钒钛》2016,(3):66-69
以含钛高炉渣为原料,利用XRF、XRD、SEM、UV-Vis-DRS等分析方法对含钛高炉渣进行化学成分分析,确定了其作为光催化剂的可行性。通过抑菌环法和烧瓶振荡法研究了含钛高炉渣对白色念珠菌(ATCC10231)、大肠杆菌(ATCC25922)、金黄色葡萄球菌(ATCC6538)的抗菌性能。结果表明:纯含钛高炉渣对大肠杆菌(ATCC25922)无明显抑菌作用,对白色念珠菌(ATCC10231)抑菌作用表现不明显,而对金黄色葡萄球菌(ATCC6538)表现出一定抑菌性,在作用1 h时抑菌率达54.54%。  相似文献   

16.
攀枝花地区钒钛磁铁精矿经直接炼铁后,其中的钛几乎全部进入渣中,形成了TiO2含量达48.01%的高炉渣,高炉渣中的Ti02在直接炼铁过程中与MgO和Fe2O3等其它氧化物结合形成了复杂的钛酸盐化合物,常规酸浸法除杂效果不理想。实验采用加碱焙烧后,5%盐酸浸出的工艺制备富钛料,通过研究焙烧温度和碱添加比对浸出除杂的影响,实验结果表明高炉渣按50%的碱渣比和1000℃条件下焙烧后浸出,浸出渣中TiO2品位达75.65%且大多留存在渣中。该工艺具有渣处理成本低、产生的废酸量少等突出优点,是综合利用含钛高炉渣的一个可行途径。  相似文献   

17.
针对钒钛磁铁矿高炉冶炼副产的含钛高炉渣成分复杂、难以处理特点,采用氯化铵焙烧活化—浸出提质处理工艺进行钙铝镁等杂质金属元素的脱除,获得钛富集物。考察焙烧和浸出过程中各参数对杂质脱除的影响。结果表明,在焙烧温度450℃、焙烧时间1 h、氯化铵配比40%、原料-0.074 mm占比83%,盐酸浓度9%、液固比5、浸出时间4 h、浸出温度90℃的优化条件下,含钛高炉渣中钙、铝、镁脱除率分别达到73.22%、90.04%、91.39%,钛损失率仅有0.34%,达到选择性脱除炉渣中杂质元素,提高含钛高炉渣品质的目的。  相似文献   

18.
含钛高炉渣熔化性温度的试验研究   总被引:1,自引:0,他引:1  
含钛高炉渣的熔化性温度是影响高炉炉渣冶金特性的关键因素。以工业生产含钛高炉渣为原料,进行正交试验研究,其结果表明:随着碱度的提高,熔化性温度上升,粘度也升高;MgO从6%增加到8%或8.5%时,熔化温度曲线温度转折点即熔化性温度从1 435℃降低到1 380℃;TiO2含量在16%~20%的条件下,渣中MgO在8%左右,Al2O3含量在9%~13%之间,TiO2对炉渣粘度与熔化性温度影响不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号